OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26810–26815

Efficient 1645 nm continuous-wave and Q‑switched Er:YAG laser pumped by 1532 nm narrow-band laser diode

Liang Zhu, Mingjian Wang, Jun Zhou, and Weibiao Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26810-26815 (2011)
http://dx.doi.org/10.1364/OE.19.026810


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Energy transfer upconversion induced thermal effects are mainly responsible for the low efficiency of laser diode pumped Er:YAG lasers. The current work adopts Er:YAG rods with 0.25% Er3+ doping concentration, instead of the commonly used rods with 0.5% Er3+ doping concentration. Results show that the thermal effect is greatly alleviated. A continuous-wave output of 10.2 W is obtained using 31 W incident pump power. Optical–optical efficiency is approximately 33%. Slope efficiency, with respect to the absorbed pump power, is as high as 83%, which is close to the quantum efficiency. In a Q-switched operation, 7 mJ pulses with a pulse width of ~65 ns are obtained at 100 Hz PRF.

© 2011 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 11, 2011
Revised Manuscript: November 15, 2011
Manuscript Accepted: December 2, 2011
Published: December 15, 2011

Citation
Liang Zhu, Mingjian Wang, Jun Zhou, and Weibiao Chen, "Efficient 1645 nm continuous-wave and Q‑switched Er:YAG laser pumped by 1532 nm narrow-band laser diode," Opt. Express 19, 26810-26815 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Liu, J. Liu, and W. Chen, “Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar,” Chin. Opt. Lett.9(9), 090604–090607 (2011). [CrossRef]
  2. C. Gao, S. Zhu, W. Zhao, Z. Cao, and Z. Yang, “Eye-safe, high-energy, single-mode all-fiber laser with widely tunable repetition rate,” Chin. Opt. Lett.7(7), 611–613 (2009). [CrossRef]
  3. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, “Efficient 1645-nm Er:YAG laser,” Opt. Lett.29(10), 1075–1077 (2004). [CrossRef] [PubMed]
  4. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005). [CrossRef]
  5. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett.31(6), 754–756 (2006). [CrossRef] [PubMed]
  6. K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG laser operating at 1645 nm and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006). [CrossRef]
  7. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Fiber-laser-pumped Er:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 361–371 (2009). [CrossRef]
  8. D. Garbuzov, I. Kudryashov, and M. Dubinskii, “110W(0.9J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser,” Appl. Phys. Lett.87(12), 121101 (2005). [CrossRef]
  9. I. Kudryashov and A. Katsnelson, “Q-switch resonantly diode-pumped Er:YAG laser,” Proc. SPIE7578, 75781D (2009).
  10. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express18(13), 13673–13678 (2010). [CrossRef] [PubMed]
  11. I. Kudryashov, A. Katsnelson, N. Ter-Gabrielyan, and M. Dubinskii, “Room temperature power scalability of the diode-pumped Er:YAG eye-safe laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CWA2.
  12. I. Kudryashov, N. Ter-Gabrielyan, and M. Dubinskii, “Resonantly diode-pumped Er:YAG laser: 1470-nm vs. 1530-nm CW pumping case,” Proc. SPIE7325, 732505 (2009). [CrossRef]
  13. M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B93(4), 773–778 (2008). [CrossRef]
  14. S. Bigotta and M. Eichhorn, “Q-switched resonantly diode-pumped Er3+:YAG laser with fiberlike geometry,” Opt. Lett.35(17), 2970–2972 (2010). [CrossRef] [PubMed]
  15. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer-upconversion on threshold pump power in quasi-three-level solid-state lasers,” Opt. Express17(14), 11935–11943 (2009). [CrossRef] [PubMed]
  16. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett.34(10), 1501–1503 (2009). [CrossRef] [PubMed]
  17. N. P. Barnes, “Solid-state lasers from an efficiency perspective,” IEEE J. Sel. Top. Quantum Electron.13(3), 435–447 (2007). [CrossRef]
  18. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992). [CrossRef]
  19. M. Eichhorn, “Numerical modeling of diode-end-pumped high-power Er3+:YAG lasers,” IEEE J. Quantum Electron.44(9), 803–810 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited