OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26827–26838

Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network

H. Kurt, I. H. Giden, and D. S. Citrin  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26827-26838 (2011)
http://dx.doi.org/10.1364/OE.19.026827


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm× 4.096μm region, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: September 6, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: December 1, 2011
Published: December 15, 2011

Citation
H. Kurt, I. H. Giden, and D. S. Citrin, "Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network," Opt. Express 19, 26827-26838 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26827


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett.16, 2060–2062 (2004). [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett.10(4), 549–551 (1998). [CrossRef]
  3. D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE3847, 65–71 (1999). [CrossRef]
  4. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B23(4), 684–691 (2006). [CrossRef]
  5. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006). [CrossRef]
  6. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett.40(14), 862–863 (2004). [CrossRef]
  7. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  8. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express16(26), 21456–21461 (2008). [CrossRef] [PubMed]
  9. B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express17(7), 5033–5038 (2009). [CrossRef] [PubMed]
  10. Y. Zhang and B. Li, “Photonic crystal-based bending waveguides for optical interconnections,” Opt. Express14(12), 5723–5732 (2006). [CrossRef] [PubMed]
  11. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett.93(18), 181107 (2008). [CrossRef]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005). [CrossRef]
  13. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.16(5), 1328–1330 (2004). [CrossRef]
  14. Y. A. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  15. M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol.20(9), 1762–1772 (2002). [CrossRef]
  16. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol.17(9), 1682–1692 (1999). [CrossRef]
  17. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  18. G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004). [CrossRef] [PubMed]
  19. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B22(6), 1191–1198 (2005). [CrossRef]
  20. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).
  21. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett.77(18), 3787–3790 (1996). [CrossRef] [PubMed]
  22. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501–096557 (2010). [CrossRef]
  23. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron.43(1), 78–84 (2007). [CrossRef]
  24. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express13(25), 10316–10326 (2005). [CrossRef] [PubMed]
  25. A. Martinez, J. Garcia, G. Sanchez, and J. Marti, “Planar photonic crystal structure with inherently single-mode waveguides,” J. Opt. Soc. Am. A20(11), 2131–2136 (2003). [CrossRef] [PubMed]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  27. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  28. H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nano-photonic wire waveguide bends,” J. Opt. Soc. Am. B28(3), 495–501 (2011). [CrossRef]
  29. Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron.15(5), 1406–1412 (2009). [CrossRef]
  30. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999). [CrossRef]
  31. G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B29(2), 021205 (2011). [CrossRef]
  32. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett.19(19), 1532–1534 (2007). [CrossRef]
  33. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys.105(10), 103708 (2009). [CrossRef]
  34. T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1461–L1463 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (458 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited