OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26917–26927

Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays

Ni Chen, Jiwoon Yeom, Jae-Hyun Jung, Jae-Hyeung Park, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26917-26927 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the resolution of the hologram reconstruction synthesis methods based on integral imaging using rectangular and hexagonal lens arrays. By using a hexagonal lens array instead of conventional rectangular lens array, the three-dimensional objects are sampled with hexagonal grids. Due to more efficient sampling of the hexagonal grid, the resolution of the reconstructed object is higher compared with the case of using rectangular lens array. We analyze the resolution enhancement of the hologram reconstruction quantitatively and verify it experimentally.

© 2011 OSA

OCIS Codes
(090.0090) Holography : Holography
(100.6890) Image processing : Three-dimensional image processing
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: October 26, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 7, 2011
Published: December 16, 2011

Ni Chen, Jiwoon Yeom, Jae-Hyun Jung, Jae-Hyeung Park, and Byoungho Lee, "Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays," Opt. Express 19, 26917-26927 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009). [CrossRef] [PubMed]
  2. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17(8), 6320–6334 (2009). [CrossRef] [PubMed]
  3. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10(1), 20–22 (1967). [CrossRef]
  4. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011). [CrossRef]
  5. J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth-enhanced integral imaging by use of optical path control,” Opt. Lett. 29(15), 1790–1792 (2004). [CrossRef] [PubMed]
  6. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11(26), 3528–3541 (2003). [CrossRef] [PubMed]
  7. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002). [CrossRef] [PubMed]
  8. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001). [CrossRef] [PubMed]
  9. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010). [CrossRef] [PubMed]
  10. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009). [CrossRef] [PubMed]
  11. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26(19), 1481–1482 (2001). [CrossRef] [PubMed]
  12. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009). [CrossRef] [PubMed]
  13. L. Middleton and J. Sivaswamy, Hexagonal Image Processing (Springer Verlag, 2005).
  14. G. Jurasinski and C. Beierkuhnlein, “Spatial patterns of biodiversity-assessing vegetation using hexagonal grids,” Biol. Environ. Proc. R. Irish Acad. 106(3), 401–411 (2006). [CrossRef]
  15. D. P. Petersen and D. Middleton, “Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces,” Inf. Control 5(4), 279–323 (1962). [CrossRef]
  16. P. K. Murphy and N. C. Gallagher, “Hexagonal sampling techniques applied to Fourier and Fresnel digital holograms,” J. Opt. Soc. Am. 72(7), 929–937 (1982). [CrossRef]
  17. S. Baronti, A. Capanni, A. Romoli, L. Santurri, and R. Vitulli, “On detector shape in hexagonal sampling grids,” Proc. SPIE 4540, 354–365 (2001). [CrossRef]
  18. J.-H. Park, D. Han, and N. Kim, “Capture of the three-dimensional information based on integral imaging and its sampling analysis,” Proc. SPIE 7848, 1B1–1B9 (2010).
  19. N. Chen and J. Yeom, J.-H, Park, and B. Lee, “High resolution Fourier hologram generation using hexagonal lens array based on integral imaging,” in International Meeting on Information Display (Korean Information Display Society, 2011) pp. 729–730.
  20. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005) chap. 9, pp. 356–359.
  22. L. Zhang, D. Wang, and A. Vincent, “Adaptive reconstruction of intermediate views from stereoscopic images,” IEEE Trans. Circ. Syst. Video Tech. 16(1), 102–113 (2006). [CrossRef]
  23. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16(12), 8800–8813 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (244 KB)     
» Media 2: MOV (120 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited