OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26948–26955

On-chip optical diode based on silicon photonic crystal heterojunctions

Chen Wang, Chang-Zhu Zhou, and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26948-26955 (2011)
http://dx.doi.org/10.1364/OE.19.026948


View Full Text Article

Enhanced HTML    Acrobat PDF (1698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical isolation is a long pursued object with fundamental difficulty in integrated photonics. As a step towards this goal, we demonstrate the design, fabrication, and characterization of on-chip wavelength-scale optical diodes that are made from the heterojunction between two different silicon two-dimensional square-lattice photonic crystal slabs with directional bandgap mismatch and different mode transitions. The measured transmission spectra show considerable unidirectional transmission behavior, in good agreement with numerical simulations. The experimental realization of on-chip optical diodes with wavelength-scale size using all-dielectric, passive, and linear silicon photonic crystal structures may help to construct on-chip optical logical devices without nonlinearity or magnetism, and would open up a road towards photonic computers.

© 2011 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.3240) Optical devices : Isolators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: November 23, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 6, 2011
Published: December 16, 2011

Citation
Chen Wang, Chang-Zhu Zhou, and Zhi-Yuan Li, "On-chip optical diode based on silicon photonic crystal heterojunctions," Opt. Express 19, 26948-26955 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26948


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004). [CrossRef] [PubMed]
  2. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer Berlin / Heidelberg, 2004).
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  4. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron.6(6), 1312–1317 (2000). [CrossRef]
  5. S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett.26(12), 929–931 (2001). [CrossRef] [PubMed]
  6. A. H. Gevorgyan, “Optical diode based on a highly anisotropic layer of a helical periodic medium subjected to a magnetic field,” Tech. Phys.47(8), 1008–1013 (2002). [CrossRef]
  7. C. G. Treviño-Palacios, G. I. Stegeman, and P. Baldi, “Spatial nonreciprocity in waveguide second-order processes,” Opt. Lett.21(18), 1442–1444 (1996). [CrossRef] [PubMed]
  8. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater.4(5), 383–387 (2005). [CrossRef] [PubMed]
  9. J. Y. Chen and L. W. Chen, “Color separating with integrated photonic bandgap optical diodes: a numerical study,” Opt. Express14(22), 10733–10739 (2006). [CrossRef] [PubMed]
  10. R. L. Espinola, T. Izuhara, M. C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett.29(9), 941–943 (2004). [CrossRef] [PubMed]
  11. M. A. Levy, “Nanomagnetic route to bias-magnet-free, on-chip Faraday rotators,” J. Opt. Soc. Am. B22(1), 254–260 (2005). [CrossRef]
  12. T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett.90(2), 023514 (2007). [CrossRef]
  13. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B22, 240–253 (2005). [CrossRef]
  14. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett.79(3), 314–316 (2001). [CrossRef]
  15. M. Soljačić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett.28(8), 637–639 (2003). [CrossRef] [PubMed]
  16. S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, and R. Noe, “Non-magnetic 30 dB integrated optical isolator in III/V material,” Electron. Lett.40(20), 1293–1294 (2004). [CrossRef]
  17. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  18. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  19. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  20. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys.76(4), 2023–2026 (1994). [CrossRef]
  21. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.73(10), 1368–1371 (1994). [CrossRef] [PubMed]
  22. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B19(9), 2241–2249 (2002). [CrossRef]
  23. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B80(15), 155117 (2009). [CrossRef]
  24. C. C. Lu, X. Y. Hu, Y. B. Zhang, Z. Q. Li, X. A. Xu, H. Yang, and Q. H. Gong, “Ultralow power all-optical diode in photonic crystal heterostructures with broken spatial inversion symmetry,” Appl. Phys. Lett.99(5), 051107 (2011). [CrossRef]
  25. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, “Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode,” Phys. Rev. Lett.106(8), 084301 (2011). [CrossRef] [PubMed]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  27. Y. Z. Liu, R. J. Liu, S. Feng, C. Ren, H. F. Yang, D. Z. Zhang, and Z. Y. Li, “Multi-channel filters via Γ-K and Γ-M waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs,” Appl. Phys. Lett.93(24), 241107 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited