OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26975–26983

Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures

Ksenia Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26975-26983 (2011)
http://dx.doi.org/10.1364/OE.19.026975


View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multilayered thin-film doped silica structures are experimentally demonstrated as an effective tool to enhance the second-order nonlinear properties induced in thermally poled glass devices. A 204-fold improvement is obtained in the second harmonic generated (SHG) in a poled structure with a 3 μm-thick multilayered stack consisting of sub- 100 nm-thick alternating germanium-doped and undoped silica layers compared to poled bulk silica glass. The induced nonlinearity is localized within the layered region, indicating that the multilayered design can be used to precisely control the thickness and the location of the nonlinearity. Such artificial nonlinear structures can be used to overcome the main limitations of existing poled glass devices, therefore opening the door to practical implementations of efficient active devices in silica glass.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(160.6030) Materials : Silica
(190.0190) Nonlinear optics : Nonlinear optics
(310.4165) Thin films : Multilayer design
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 8, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 1, 2011
Published: December 16, 2011

Citation
Ksenia Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, "Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures," Opt. Express 19, 26975-26983 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009). [CrossRef] [PubMed]
  2. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  3. D. Cyranoski, “Materials science: China’s crystal cache,” Nature457(7232), 953–955 (2009). [CrossRef] [PubMed]
  4. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16(22), 1732–1734 (1991). [CrossRef] [PubMed]
  5. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett.19(7), 466–468 (1994). [CrossRef] [PubMed]
  6. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A65(4), 043816 (2002). [CrossRef]
  7. B.-J. Seo, S. Kim, B. Bortnik, H. Fetterman, D. Jin, and R. Dinu, “Optical signal processor using electro-optic polymer waveguides,” J. Lightwave Technol.27(15), 3092–3106 (2009). [CrossRef]
  8. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007). [CrossRef]
  9. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett.34(16), 2483–2485 (2009). [CrossRef] [PubMed]
  10. P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett.68(2), 269–271 (1996). [CrossRef]
  11. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids242(2-3), 165–176 (1998). [CrossRef]
  12. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C114(29), 12754–12759 (2010). [CrossRef]
  13. Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett.87(12), 121906 (2005). [CrossRef]
  14. A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express13(20), 8015–8024 (2005). [CrossRef] [PubMed]
  15. A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys.103(6), 063109 (2008). [CrossRef]
  16. Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84(24), 4935–4937 (2004). [CrossRef]
  17. M. Fokine, M. Ferraris, and I. C. Carvalho, “Thermal poling of glass: a nonlinear ionic RC circuit,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWBPDP6.
  18. W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B59(4), 2932–2946 (1999). [CrossRef]
  19. A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE3542, 115–119 (1998) (Doped Fiber Devices). [CrossRef]
  20. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” J. Non-Cryst. Solids357(8-9), 1945–1962 (2011). [CrossRef]
  21. H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett.87(10), 101108 (2005). [CrossRef]
  22. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, “Characterization of thermally poled germanosilicate thin films,” Opt. Express12(20), 4698–4708 (2004). [CrossRef] [PubMed]
  23. A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion.154–155, 217–221 (2002). [CrossRef]
  24. F. C. Garcia, L. Vogelaar, and R. Kashyap, “Poling of a channel waveguide,” Opt. Express11(23), 3041–3047 (2003). [CrossRef] [PubMed]
  25. K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett.99(3), 031109 (2011). [CrossRef]
  26. N. Myrén, H. Olsson, L. Norin, N. Sjodin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express12(25), 6093–6099 (2004). [CrossRef] [PubMed]
  27. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett.29(18), 2124–2126 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited