OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1728–1733

Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons

Mark Shtaif, Cristian Antonelli, and Misha Brodsky  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1728-1733 (2011)
http://dx.doi.org/10.1364/OE.19.001728


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the feasibility of nonlocally compensating for polarization mode dispersion (PMD), when polarization entangled photons are distributed in fiber-optic channels. We quantify the effectiveness of nonlocal compensation while taking into account the possibility that entanglement is generated through the use of a pulsed optical pump signal.

© 2011 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 19, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 3, 2010
Published: January 14, 2011

Citation
Mark Shtaif, Cristian Antonelli, and Misha Brodsky, "Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons," Opt. Express 19, 1728-1733 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1728


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007). [CrossRef] [PubMed]
  2. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002). [CrossRef]
  3. M. Brodsky, E. George, C. Antonelli, and M. Shtaif, "Loss of Polarization Entanglement in Optical Fibers due to Polarization Mode Dispersion," Proc. Opt. Fiber. Comm. Conf. (OFC) San Diego 2010, paper PDPA1.
  4. J. P. Gordon, and H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers," Proc. Natl. Acad. Sci. U.S.A. 97, 4541-4550 (2000). [CrossRef] [PubMed]
  5. M. Brodsky, K. E. George, C. Antonelli, and M. Shtaif, “Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path,” Opt. Lett. 36(1), 43–45 (2011). [CrossRef] [PubMed]
  6. H. Sunnerud, and M. Karlsson, "Analytical theory for PMD compensation," IEEE Photon. Technol. Lett. 12, 50-52 (2000). [CrossRef]
  7. J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992). [CrossRef] [PubMed]
  8. J. D. Franson, "Nonclassical nature of dispersion cancellation and nonlocal interferometry," Phys. Rev. A 80, 031119 (2009). [CrossRef]
  9. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, "Experimental Verification of Decoherence-Free Subspaces," Science 290, 498-501 (2000). [CrossRef] [PubMed]
  10. J. B. Altepeter, P. G. Hadley, S. M. Wendelken, A. J. Berglund, and P. G. Kwiat, "Experimental Investigation of a Two-Qubit Decoherence-Free Subspace," Phys. Rev. Lett. 92, 147901 (2004). [CrossRef] [PubMed]
  11. W. P. Grice, and I. A. Walmsley, "Spectral information and distinguishability in type-II down-conversion with a broadband pump," Phys. Rev. A 56, 1627-1634 (1997). [CrossRef]
  12. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004). [CrossRef] [PubMed]
  13. S. X. Wang, and G. S. Kanter, "Robust Multiwavelength All-Fiber Source of Polarization-Entangled Photons With Built-In Analyzer Alignment Signal," IEEE J. Sel. Top. Quantum Electron. 15, 1733-1740 (2009). [CrossRef]
  14. H. Takesue, and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bells inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802 (2004). [CrossRef]
  15. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, "Polarization Mode Dispersion of Installed Fibers," J. Lightwave Technol. 24, 4584-4599 (2006). [CrossRef]
  16. M. Shtaif, and A. Mecozzi, "Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion," Opt. Lett. 25, 707-709 (2000). [CrossRef]
  17. The same expression with small modifications to the waveform part applies to the case where entanglement is generated in a χ3 nonlinear optical medium. A possible phase difference between the two polarization terms, which often follows from the experimental procedure of photon generation [12], is immaterial to our analysis and is therefore omitted.
  18. W. K. Wootters, "Entanglement of Formation of an Arbitrary State of Two Qubits," Phys. Rev. Lett. 80, 2245-2248 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited