OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1755–1766

Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique

Robinson Kuis, Anthony Johnson, and Sudhir Trivedi  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1755-1766 (2011)
http://dx.doi.org/10.1364/OE.19.001755


View Full Text Article

Enhanced HTML    Acrobat PDF (1328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The induced grating autocorrelation technique, a technique based on temporally resolved two-beam coupling in a photorefractive crystal, was used to measure the nonlinear coefficient γ of three photonic crystal fibers (PCFs): a 30-cm long highly nonlinear PCF, and two large mode area PCFs of 4.5-m and 4.9-m lengths. The measurement used intense 2-ps, 800-nm (850-nm in one case) pulses from a Ti: sapphire laser that experienced self-phase modulation and group velocity dispersion as it travels inside the fibers. This technique was also expanded to measure γ and the dispersion coefficient β2 simultaneously.

© 2011 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 18, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 13, 2011
Published: January 14, 2011

Citation
Robinson Kuis, Anthony Johnson, and Sudhir Trivedi, "Measurement of the effective nonlinear and dispersion coefficients in optical fibers by the induced grating autocorrelation technique," Opt. Express 19, 1755-1766 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “Pure silica single-mode fiber with hexagonal photonic crystal cladding,” Conf. Optical Fiber Commun. (OFC) San Jose, CA, (1996).
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15(3), 748–752 (1998). [CrossRef]
  4. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23(11), 3580–3590 (2005). [CrossRef]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  6. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999). [CrossRef]
  7. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, ““Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Opt. Lett. 21, 1966–1968 (1996). For an additional measurement approach in single-mode fiber see for example, C. Vinegone, M. Wegmuller, and N. Gisin, “Measurements of the Nonlinear Coefficient of Standard SMF, DSF, and DCF Fibers Using a Self-Aligned Interferometer and a Faraday Mirror,” IEEE Photon. Technol. Lett. 13, 1337–1339 (2001). [CrossRef] [PubMed]
  8. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers,” Opt. Express 15(6), 3507–3512 (2007). [CrossRef] [PubMed]
  9. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “New approach to the measurement of the nonlinear refractive index of short (<25 m) lengths of silica and erbium-doped fibers,” Opt. Lett. 28(19), 1796–1798 (2003). [CrossRef] [PubMed]
  10. F. A. Oguama, H. Garcia, and A. M. Johnson, “Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,” J. Opt. Soc. Am. B 22(2), 426–436 (2005). [CrossRef]
  11. A. M. Johnson, A. M. Glass, W. M. Simpson, R. B. Bylsma, and D. H. Olson, “Microwatt picosecond pulse autocorrelator using photorefractive GaAs:Cr,” in OSA Annual Meeting, Vol. 11 of 1988 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 128.
  12. A. M. Johnson, A. M. Glass, W. M. Simpson, and D. H. Olson, “Infrared picosecond pulse diagnostics using photorefractive beam coupling,” in Conference on Lasers and Electro-Optics, Vol. II of 1989 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 226.
  13. A. M. Johnson, W. M. Simpson, A. M. Glass, M. B. Klein, D. Rytz, and R. Trebino, “Infrared picosecond pulse correlation measurements using photorefractive beam coupling and harmonic generation in KNbO3 and BaTiO3,” in OSA Annual Meeting, Vol. 18 of 1989 Optical Society of America Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 53.
  14. V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56(6), 521–523 (1990). [CrossRef]
  15. X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7(12), 2347–2355 (1990). [CrossRef]
  16. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole - electron competition in photorefractive gratings,” Opt. Lett. 11(5), 312–314 (1986). [CrossRef] [PubMed]
  17. H. Garcia, “Time domain measurement of the nonlinear refractive index in optical fibers and semiconductors films,” Ph.D. dissertation (New Jersey Institute of Technology, Newark, NJ, 2000).
  18. F. A. Oguama, A. M. Johnson, and W. A. Reed, “Measurement of the nonlinear coefficient of telecommunication fibers as a function of Er, Al, and Ge doping profiles by using the photorefractive beam-coupling technique,” J. Opt. Soc. Am. B 22(8), 1600–1604 (2005). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  20. The ssprop code is available from the Photonics Research Laboratory at University of Maryland, College Park at http://www.photonics.umd.edu/software/ssprop
  21. R. Kuis, “Theoretical and Experimental Study of the Nonlinear Optical and Dispersive Properties of Conventional and Photonic Crystal Fibers,” Ph.D. dissertation (University of Maryland, Baltimore County, Baltimore, MD 2009).
  22. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994). [CrossRef]
  23. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998). [CrossRef]
  24. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59(8), 880–883 (1987). [CrossRef] [PubMed]
  25. Obtained from www.nktphotonics.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited