OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1777–1785

Enhanced nonlinear response from metal surfaces

Jan Renger, Romain Quidant, and Lukas Novotny  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1777-1785 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While metals benefit from a strong nonlinearity at optical frequencies, its practical exploitation is limited by the weak penetration of the electric field within the metal and the screening by the surface charges. It is shown here that this limitation can be bypassed by depositing a thin dielectric layer on the metal surface or, alternatively, using a thin metal film. This strategy enables us to enhance four-wave mixing in metals by up to four orders of magnitude.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: November 29, 2010
Revised Manuscript: December 27, 2010
Manuscript Accepted: December 28, 2010
Published: January 14, 2011

Jan Renger, Romain Quidant, and Lukas Novotny, "Enhanced nonlinear response from metal surfaces," Opt. Express 19, 1777-1785 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Boyd, Nonlinear Optics (Academic Press, San Diego, 2008), 3rd ed.
  2. Y. R. Shen, The Principles of Nonlinear Optics (J. Wiley & Sons, New York, 1984).
  3. T. Heinz, Nonlinear Surface Electromagnetic Phenomena (Elsevier, Amsterdam, 1991).
  4. F. Brown, R. E. Parks, and A. M. Sleeper, "Nonlinear optical reflection from a metallic boundary," Phys. Rev. Lett. 14, 1029-1031 (1965). [CrossRef]
  5. H. B. Jiang, L. Li, W. C. Wang, J. B. Zheng, Z. M. Zhang, and Z. Chen, "Reflected second-harmonic generation at a silver surface," Phys. Rev. B 44, 1220-1224 (1991). [CrossRef]
  6. A. Leitner, "Second-harmonic generation in metal island films consisting of oriented silver particles of low symmetry," Mol. Phys. 70, 197 (1990). [CrossRef]
  7. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  8. N. A. Papadogiannis, P. A. Loukakos, and S. D. Moustaizis, "Observation of the inversion of second and third harmonic generation efficiencies on a gold surface in the femtosecond regime," Opt. Commun. 166, 133-139 (1999). [CrossRef]
  9. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation," Phys. Rev. Lett. 83, 4421-4424 (1999). [CrossRef]
  10. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, "Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales," Opt. Lett. 23, 388-390 (1998). [CrossRef]
  11. M. Lippitz, M. A. van Dijk, and M. Orrit, "Third-harmonic generation from single gold nanoparticles," Nano Lett. 5, 799-802 (2005). [CrossRef] [PubMed]
  12. M. Danckwerts, and L. Novotny, "Optical frequency mixing at coupled gold nanoparticles," Phys. Rev. Lett. 98, 026104 (2007). [CrossRef] [PubMed]
  13. N. K. Grady, M. W. Knight, R. Bardhan, and N. J. Halas, "Optically-driven collapse of a plasmonic nanogap self-monitored by optical frequency mixing," Nano Lett. 10, 1522-1528 (2010). [CrossRef] [PubMed]
  14. H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, "Nonlinear dark-field microscopy," Nano Lett. 10, 5076-5079 (2010). [CrossRef]
  15. Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, "Four-wave mixing microscopy of nanostructures," Adv. Opt. Photon. 3, 1-52 (2011). [CrossRef]
  16. C. Flytzanis, F. Hache, M. Klein, D. Ricard, and P. Roussignol, "1. Semiconductor and metal crystallites in dielectrics:" in "Nonlinear Optics in Composite Materials:" vol. 29 of Progress in Optics, E. Wolf, ed. (Elsevier, 1991), pp. 321-411.
  17. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, "Surface-enhanced nonlinear four-wave mixing," Phys. Rev. Lett. 104, 046803 (2010). [CrossRef] [PubMed]
  18. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. Kats, M. Scully, and F. Capasso, "Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings," Nano Lett. 10, 4880-4883 (2010). [CrossRef]
  19. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, "Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing," Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]
  20. N. Bloembergen, and P. S. Pershan, "Light waves at the boundary of nonlinear media," Phys. Rev. 128, 606-622 (1962). [CrossRef]
  21. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003). [CrossRef]
  22. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, "Nonlocal ponderomotive nonlinearity in plasmonics," Opt. Lett. 35, 1551-1553 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited