OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1905–1914

Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal

Manasadevi P. Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1905-1914 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated the operation of cw diode-pumped Yb:YAG laser in radial or azimuthal polarized (RP or AP) beams using a combination of birefringent uniaxial crystal (c-cut YVO4 or α-BBO) and lens as intra-cavity elements. RP and AP doughnut modes (M2 = 2-2.5, polarization extinction ratio 50-100:1) with output power up to 60mW were generated. Apart from doughnut modes, RP or AP ring-like off-axis oscillations and multi-ring beams with mixed RP and AP were also observed at the output of this laser scheme. Using intra-cavity short focus lenses with spherical aberrations AP or RP modes of higher orders was obtained. Mechanism of mode selection in the laser is discussed. The large variety of beams with axially symmetric polarizations from the output of the proposed laser scheme may find applications in different fields.

© 2011 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.4780) Lasers and laser optics : Optical resonators
(260.5430) Physical optics : Polarization

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 12, 2010
Revised Manuscript: January 13, 2011
Manuscript Accepted: January 13, 2011
Published: January 18, 2011

Manasadevi P. Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda, "Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal," Opt. Express 19, 1905-1914 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  2. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  3. Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005). [CrossRef] [PubMed]
  4. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26(12), 2242–2247 (2009). [CrossRef]
  5. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]
  6. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000). [CrossRef]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007). [CrossRef]
  8. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  9. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993). [CrossRef] [PubMed]
  10. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  11. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78–98 (2007). [CrossRef]
  12. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006). [CrossRef] [PubMed]
  13. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000). [CrossRef]
  14. T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and T. Graf, “Generation of radially polarized beams in Nd:YAG lasers with polarization selective mirrors,” Laser Phys. Lett. 1(5), 234–236 (2004). [CrossRef]
  15. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007). [CrossRef] [PubMed]
  16. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007). [CrossRef]
  17. D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20(7), 266–267 (1972). [CrossRef]
  18. J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14(8), 3304–3311 (2006). [CrossRef] [PubMed]
  19. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  20. K. Yonezawa, Y. Kozawa, and S. Sato, “Compact Laser with Radial Polarization Using Birefringent Laser Medium,” Jpn. J. Appl. Phys. 46(No. 8A), 5160–5163 (2007). [CrossRef]
  21. R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009). [CrossRef]
  22. J.-L. Li, K. Ueda, L.-X. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2.,” Opt. Express 16(14), 10841–10848 (2008). [CrossRef] [PubMed]
  23. W. Koechner, Solid-State Laser Engineering (Springer science + business media, Inc., sixth revised and updated edition, 2006), Chap. 5.
  24. N. Hodgson, and H. Weber, in Laser Resonators and Beam Propagation, (Springer science + business media, Inc., second edition, 2005).
  25. M. P. Thirugnanasambandam, Yu. Senatsky, and K. Ueda, “Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser,” Laser Phys. Lett. 7(9), 637–643 (2010). [CrossRef]
  26. F. D. Vanderwerf, Applied Prismatic and Reflective Optics, (SPIE Press, 2010), Chap. 3.
  27. Yu. Senatsky, J.-F. Bisson, A. Shelobolin, A. Shirakawa, and K. Ueda, “Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration,” Laser Phys. 19(5), 911–918 (2009). [CrossRef]
  28. Y. Kozawa and S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett. 33(19), 2278–2280 (2008). [CrossRef] [PubMed]
  29. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited