OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1915–1920

Point spreading in turbid media with anisotropic single scattering

Magnus Neuman, Ludovic G. Coppel, and Per Edström  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 1915-1920 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Point spreading is investigated using general radiative transfer theory. We find that the single scattering anisotropy plays a significant role for point spreading together with the medium mean free path, single scattering albedo and thickness. When forward scattering dominates, the light will on average undergo more scattering events to give a specific optical response in reflectance measurements. This will significantly increase point spreading if the medium is low absorbing with large mean free path. Any fundamental and generic model of point spreading must capture the dependence on all of these medium characteristics.

© 2011 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(100.2810) Image processing : Halftone image reproduction
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(290.2558) Scattering : Forward scattering

ToC Category:

Original Manuscript: November 18, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 12, 2011
Published: January 18, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Magnus Neuman, Ludovic G. Coppel, and Per Edström, "Point spreading in turbid media with anisotropic single scattering," Opt. Express 19, 1915-1920 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Oittinen, "Limits of microscopic print quality," in Advances in Printing Science and Technology, W. H. Banks, ed. (Pentech, London, 1982), Vol. 16, pp 121-128.
  2. P. Kubelka, and F. Munk, "Ein beitrag zur optik der farbanstriche," Z. Tech. Phys. (Leipzig) 11a, 593-601 (1931).
  3. P. G. Engeldrum, and B. Pridham, "Application of turbid medium theory to paper spread function measurements," Tech. Assoc. Graphic Arts Proc. 47, 339-352 (1995).
  4. J. S. Arney, J. Chauvin, J. Nauman, and P. G. Anderson, "Kubelka-Munk theory and the MTF of paper," J. Imaging Sci. Technol. 47, 339-345 (2003).
  5. S. Gustavson, "Dot Gain in Colour Halftones," Doctoral thesis, Linköping university (1997).
  6. P. Emmel, "Modèles de Prédiction Couleur Appliqués à l’Impression Jet d’Encre," Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne (1998).
  7. S. Mourad, "Improved Calibration of Optical Characteristics of Paper by an Adapted Paper-MTF Model," J. Imaging Sci. Technol. 51, 283-292 (2007). [CrossRef]
  8. A. S. Glassner, Principles of Digital Image Synthesis, Vol. 2, (Morgan Kauffman, 1995).
  9. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  10. S. Chandrasekhar, Radiative Transfer, (Dover, 1960).
  11. L. G. Henyey, and J. L. Greenstein, "Diffuse Radiation in the Galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  12. W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  13. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993). [CrossRef] [PubMed]
  14. N. Joshi, C. Donner, and H. W. Jensen, "Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination," Opt. Lett. 31, 936-938 (2006). [CrossRef] [PubMed]
  15. P. Edström, "A fast and stable solution method for the radiative transfer problem," SIAM Rev. 47, 447-468 (2005). [CrossRef]
  16. L. G. Coppel, P. Edström, and M. Lindquister, "Open source Monte Carlo simulation platform for particle level simulation of light scattering from generated paper structures," in Proc. Papermaking Res. Symp., E. Madetoja, H. Niskanen and J. Hämäläinen, eds. (Kuopio, 2009).
  17. M. Sormaz, T. Stamm, S. Mourad, and P. Jenny, "Stochastic modeling of light scattering with fluorescence using a Monte Carlo-based multiscale approach," J. Opt. Soc. Am. A 26, 1403-1413 (2009). [CrossRef]
  18. T. F. Chen, G. V. G. Baranoski, and K. F. Lin, "Bulk scattering approximations for HeNe laser transmitted through paper," Opt. Express 16, 21762-21771 (2008). [CrossRef] [PubMed]
  19. M. Neuman, and P. Edström, "Anisotropic reflectance from turbid media. I. Theory," J. Opt. Soc. Am. A 27, 1032-1039 (2010). [CrossRef]
  20. M. Neuman, and P. Edström, "Anisotropic reflectance from turbid media. II. Measurements," J. Opt. Soc. Am. A 27, 1040-1045 (2010). [CrossRef]
  21. ISO 2469: Paper, Board and Pulps - Measurement of Diffuse Reflectance Factor, (International Organization for Standardization, 1994).
  22. P. Edström, "A Two-Phase Parameter Estimation Method for Radiative Transfer Problems in Paper Industry Applications," J. Comput. Appl. Math. 16, 927-951 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited