OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1936–1944

Electromagnetically-induced phase grating: A coupled-wave theory analysis

Silvânia A. Carvalho and Luís E. E. de Araujo  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1936-1944 (2011)
http://dx.doi.org/10.1364/OE.19.001936


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a coupled-wave theory analysis to describe an atomic phase grating based on the giant Kerr nonlinearity of an atomic medium under electromagnetically induced transparency. An analytical expression is found for the diffraction efficiency of the grating. Efficiencies greater than 70% are predicted for incidence at the Bragg angle.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(050.2770) Diffraction and gratings : Gratings
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 1, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 12, 2011
Published: January 18, 2011

Citation
Silvania A. de Carvalho and Luis E. E. de Araujo, "Electromagnetically-induced phase grating: A coupled-wave theory analysis," Opt. Express 19, 1936-1944 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischhauer, “A. Imamoglu A and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  2. A. W. Brown, and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005). [CrossRef] [PubMed]
  3. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003). [CrossRef] [PubMed]
  4. D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, “Dynamics of a stored Zeeman coherence grating in an external magnetic field,” J. Phys. B 43, 115502 (2010). [CrossRef]
  5. H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998). [CrossRef]
  6. M. Mitsunaga, and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990). [CrossRef]
  7. G. C. Cardoso, and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002). [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  9. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35, 977–979 (2010). [CrossRef] [PubMed]
  10. H. Schmidt, and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced tranparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef] [PubMed]
  11. Z.-H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010). [CrossRef]
  12. L. Zhao, W. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A 82, 013809 (2010). [CrossRef]
  13. Q1W. R. Klein, and B. D. Cook, “Unified approach to ultrasonic light diffraction,” Trans. Sonics Ultrason. SU14, 123 (1967).
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  15. H. S. Kang, and Y. F. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  16. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Phys. Rev. Lett. 70, 2253–2256 (1993). [CrossRef] [PubMed]
  17. S. Magkiriadou, D. Patterson, T. Nicolas, and J. M. Doyle, “Cold, Optically Dense Gases of Atomic Rubidium,” http://www.doylegroup.harvard.edu/wiki/index.php/Publications.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited