OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 1945–1953

All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs

Ye Liu, Fei Qin, Zi-Ming Meng, Fei Zhou, Qing-He Mao, and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 1945-1953 (2011)
http://dx.doi.org/10.1364/OE.19.001945


View Full Text Article

Enhanced HTML    Acrobat PDF (1822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This article demonstrates theoretical design of ultracompact all-optical AND, NAND, OR, and NOR gates with two-dimensional nonlinear photonic crystal slabs. Compound Ag-polymer film with a low refractive index and large third-order nonlinearity is adopted as our nonlinear material and photonic crystal cavities with a relatively high quality factor of about 2000 is designed on this polymer slab. Numerical simulations show that all-optical logic gates with low pump-power in the order of tens of MW/cm2 can be achieved. These design results may provide very useful schemes and approaches for the realization of all-optical logic gates with low-cost, low-pump-power, high-contrast and ultrafast response-time.

© 2011 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices
(230.5298) Optical devices : Photonic crystals
(230.3750) Optical devices : Optical logic devices

ToC Category:
Optical Devices

History
Original Manuscript: November 30, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: January 6, 2011
Published: January 18, 2011

Citation
Ye Liu, Fei Qin, Zi-Ming Meng, Fei Zhou, Qing-He Mao, and Zhi-Yuan Li, "All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs," Opt. Express 19, 1945-1953 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-1945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. H. Li and G. F. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18(12), 1341–1343 (2006). [CrossRef]
  2. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006). [CrossRef] [PubMed]
  3. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature 404(6778), 579–581 (2000). [CrossRef] [PubMed]
  4. Z. Zhao, A. N. Zhang, Y. A. Chen, H. Zhang, J. F. Du, T. Yang, and J. W. Pan, “Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits,” Phys. Rev. Lett. 94(3), 030501 (2005). [CrossRef] [PubMed]
  5. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “10 Gbit/s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures,” Electron. Lett. 42(5), 303–304 (2006). [CrossRef]
  6. L. A. Wang, S. H. Chang, and Y. F. Lin, “Novel implementation method to realize all-optical logic gates,” Opt. Eng. 37(3), 1011–1018 (1998). [CrossRef]
  7. Z. J. Li, Z. W. Chen, and B. J. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13(3), 1033–1038 (2005). [CrossRef] [PubMed]
  8. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265(1), 171–174 (2006). [CrossRef]
  9. V. M. N. Passaro and F. De Leonardis, “All-optical AND gate based on Raman effect in silicon-on-insulator waveguide,” Opt. Quantum Electron. 38(9-11), 877–888 (2007). [CrossRef]
  10. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006). [CrossRef]
  11. D. O. Guney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007). [CrossRef]
  12. D. V. Novitsky, “Effect of frequency detuning on pulse propagation in one-dimensional photonic crystal with a dense resonant medium: application to optical logic,” J. Opt. Soc. Am. B 26(10), 1918–1923 (2009). [CrossRef]
  13. D. V. Novitsky and S. Y. Mikhnevich, “Logic Gate Based on a One-Dimensional Photonic Crystal Containing Quantum Dots,” J. Appl. Spectrosc. 77(2), 232–237 (2010). [CrossRef]
  14. I. V. Dzedolik, S. N. Lapayeva, and A. F. Rubass, “All-optical logic gates based on nonlinear dielectric films,” Ukr. J. Phys. Opt. 9(3), 187–196 (2008). [CrossRef]
  15. I. S. Nefedov, V. N. Gusyatnikov, P. K. Kashkarov, and A. M. Zheltikov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10(2), 640–643 (2000).
  16. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007). [CrossRef] [PubMed]
  17. P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26(1), 10–16 (2009). [CrossRef]
  18. P. Andalib and N. Granpayeh, “All-optical ultra-compact photonic crystal NOR gate based on nonlinear ring resonators,” J. Opt. A, Pure Appl. Opt. 11(8), 085203 (2009). [CrossRef]
  19. J. B. Bai, J. Q. Wang, J. Z. Jiang, X. Y. Chen, H. Li, Y. S. Qiu, and Z. X. Qiang, “Photonic NOT and NOR gates based on a single compact photonic crystal ring resonator,” Appl. Opt. 48(36), 6923–6927 (2009). [CrossRef] [PubMed]
  20. A. de Rossi, M. Lauritano, S. Combrie, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A 79(4), 043818 (2009). [CrossRef]
  21. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009). [CrossRef] [PubMed]
  22. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]
  23. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  24. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85(11), 1880–1882 (2004). [CrossRef]
  25. M. W. McCutcheon, G. W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, “All-optical conditional logic with a nonlinear photonic crystal nanocavity,” Appl. Phys. Lett. 95(22), 221102 (2009). [CrossRef]
  26. Y. Wang, X. B. Xie, and T. Goodson, “Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites,” Nano Lett. 5(12), 2379–2384 (2005). [CrossRef] [PubMed]
  27. X. Y. Hu, P. Jiang, C. Xin, H. Yang, and Q. H. Gong, “Nano-Ag:polymeric composite material for ultrafast photonic crystal all-optical switching,” Appl. Phys. Lett. 94(3), 031103 (2009). [CrossRef]
  28. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
  29. X. Y. Hu, Y. H. Liu, J. Tian, B. Y. Cheng, and D. Z. Zhang, “Ultrafast all-optical switching in two-dimensional organic photonic crystal,” Appl. Phys. Lett. 86(12), 121102 (2005). [CrossRef]
  30. Y. H. Liu, X. Y. Hu, D. X. Zhang, B. Y. Cheng, D. Z. Zhang, and Q. B. Meng, “Subpicosecond optical switching in polystyrene opal,” Appl. Phys. Lett. 86(15), 151102 (2005). [CrossRef]
  31. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95(13), 131116 (2009). [CrossRef]
  32. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li, “Ultrafast and low-power photonic crystal all-optical switching with resonant cavities,” J. Appl. Phys. 106(8), 083102 (2009). [CrossRef]
  33. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990). [CrossRef] [PubMed]
  34. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band-Gap in 2 Dimensions,” Appl. Phys. Lett. 61(4), 495–497 (1992). [CrossRef]
  35. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,” Phys. Rev. B Condens. Matter 46(17), 10650–10656 (1992). [CrossRef] [PubMed]
  36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  37. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited