OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2037–2045

Implementation of Deutsch-Jozsa algorithm and determination of value of function via Rydberg blockade

Aixi Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2037-2045 (2011)
http://dx.doi.org/10.1364/OE.19.002037


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an efficient scheme in which the Deutsch-Jozsa algorithm can be realized via Rydberg blockade interaction. Deutsch-Jozsa algorithm can fast determine whether function is constant or balanced, but this algorithm does not give the concrete value of function. Using the Rydberg blockade, value of function may be determined in our scheme. According to the quantitative calculation of Rydberg blockade, we discuss the experimental feasibility of our scheme.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 15, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: January 9, 2011
Published: January 19, 2011

Citation
Aixi Chen, "Implementation of Deutsch-Jozsa algorithm and determination of value of function via Rydberg blockade," Opt. Express 19, 2037-2045 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26(5), 1484–1509 (1997). [CrossRef]
  2. L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80(19), 4329–4332 (1998). [CrossRef]
  3. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A 439(1907), 553–558 (1992). [CrossRef]
  4. I. L. Chuang, I. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, “Experimental realization of a quantum algorithm,” Nature 393(6681), 143–146 (1998). [CrossRef]
  5. J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109(5), 1648–1653 (1998). [CrossRef]
  6. M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91(18), 187903 (2003). [CrossRef] [PubMed]
  7. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105(4), 040504 (2010). [CrossRef] [PubMed]
  8. S.-B. Zheng, “Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED,” Phys. Rev. A 70(3), 034301 (2004). [CrossRef]
  9. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104(1), 010503 (2010). [CrossRef] [PubMed]
  10. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104(1), 010502 (2010). [CrossRef] [PubMed]
  11. M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102(24), 240502 (2009). [CrossRef] [PubMed]
  12. H.-Z. Wu, Z.-B. Yang, and S.-B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82(3), 034307 (2010). [CrossRef]
  13. B. Zhao, M. Müller, K. Hammerer, and P. Zoller, “Efficient quantum repeater based on deterministic Rydberg gates,” Phys. Rev. Lett. 81, 052329 (2010).
  14. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85(10), 2208–2211 (2000). [CrossRef] [PubMed]
  15. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102(17), 170502 (2009). [CrossRef] [PubMed]
  16. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69(6), 063803 (2004). [CrossRef]
  17. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5(2), 110–114 (2009). [CrossRef]
  18. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge: Cambridge University Press,1997), Chap.5.
  19. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Many-body theory of excitation dynamics in an ultracold Rydberg gas,” Phys. Rev. A 76(1), 013413 (2007). [CrossRef]
  20. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi oscillations between ground and Rydberg states with dipole-dipole atomic interactions,” Phys. Rev. Lett. 100(11), 113003 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited