OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2216–2224

H-PDLC based waveform controllable optical choppers for FDMF microscopy

Jihong Zheng, Guoqiang Sun, Yanmeng Jiang, Tingting Wang, Aiqing Huang, Yunbo Zhang, Pingyu Tang, Songlin Zhuang, Yanjun Liu, and Stuart Yin  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2216-2224 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electrically waveform controllable optical chopper based on holographic polymer dispersed liquid crystal grating (H-PDLC) is presented in this paper. The theoretical analyses and experimental results show that the proposed optical chopper has following merits: (1) controllable waveform, (2) no mechanical motion induced vibrational noise, and (3) multiple-channel integration capability. The application of this unique electrically controllable optical chopper to frequency division multiplexed fluorescent microscopy is also addressed in this paper, which has the potential to increase the channel capacity, the stability and the reliability. This will be beneficial to the parallel detection, especially for dynamic studies of living biological samples.

© 2011 OSA

OCIS Codes
(090.2890) Holography : Holographic optical elements
(110.0180) Imaging systems : Microscopy
(110.2970) Imaging systems : Image detection systems
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Optical Devices

Original Manuscript: October 25, 2010
Revised Manuscript: December 15, 2010
Manuscript Accepted: January 14, 2011
Published: January 21, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Jihong Zheng, Guoqiang Sun, Yanmeng Jiang, Tingting Wang, Aiqing Huang, Yunbo Zhang, Pingyu Tang, Songlin Zhuang, Yanjun Liu, and Stuart Yin, "H-PDLC based waveform controllable optical choppers for FDMF microscopy," Opt. Express 19, 2216-2224 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006). [CrossRef] [PubMed]
  2. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 1989).
  3. S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995). [CrossRef] [PubMed]
  4. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002). [CrossRef] [PubMed]
  5. K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000). [CrossRef]
  6. A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007). [CrossRef] [PubMed]
  7. S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010). [CrossRef] [PubMed]
  8. K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006). [CrossRef]
  9. L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005). [CrossRef] [PubMed]
  10. H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004). [CrossRef] [PubMed]
  11. L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000). [CrossRef]
  12. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993). [CrossRef]
  13. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008). [CrossRef]
  14. N. S. Claxton, T. J. Fellers, and M. W. Davidson, “Laser scanning confocal microscopy”, www.olympusfluoview.com/theory/LSCMIntro.pdf , (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited