OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2286–2293

Slow non-dispersing wavepackets

Kyoung-Youm Kim, Chi-Young Hwang, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2286-2293 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that in plasmonic or metamaterial slab waveguides, it is possible to generate slow non-dispersing wavepackets which undergo neither spatial diffraction nor temporal spreading with no nonlinear effects by forming a type of hybrid wavepacket between slow-light waveguide modes and diffraction-free Airy wavepackets. Three mechanisms are involved in their slowness: the slow-light feature of waveguide modes, the initial launching speed of hybrid wavepackets, and their acceleration along the time domain in a moving frame.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Physical Optics

Original Manuscript: December 21, 2010
Revised Manuscript: January 19, 2011
Manuscript Accepted: January 20, 2011
Published: January 24, 2011

Kyoung-Youm Kim, Chi-Young Hwang, and Byoungho Lee, "Slow non-dispersing wavepackets," Opt. Express 19, 2286-2293 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  2. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007). [CrossRef]
  4. G. A. Siviloglou, and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007). [CrossRef] [PubMed]
  5. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008). [CrossRef]
  6. H. Cheng, W. Zang, W. Zhou, and J. Tian, “Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam,” Opt. Express 18(19), 20384–20394 (2010). [CrossRef] [PubMed]
  7. P. Polynkin, M. Koleskik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009). [CrossRef] [PubMed]
  8. M. Asorey, P. Facchi, V. I. Man’ko, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Generalized tomographic maps,” Phys. Rev. A 77(4), 042115 (2008). [CrossRef]
  9. A. Salandrino, and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35(12), 2082–2084 (2010). [CrossRef] [PubMed]
  10. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010). [CrossRef]
  11. C.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, “Dual Airy beam,” Opt. Express 18(22), 23504–23516 (2010). [CrossRef] [PubMed]
  12. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  13. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  14. K.-Y. Kim, “Tunneling-induced temporary light trapping in negative-index-clad slab waveguide,” Jpn. J. Appl. Phys. 47(6), 4843–4845 (2008). [CrossRef]
  15. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010). [CrossRef] [PubMed]
  16. W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridharb, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett. 96(21), 211112 (2010). [CrossRef]
  17. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett. 96(21), 211121 (2010). [CrossRef]
  18. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010). [CrossRef] [PubMed]
  19. K.-Y. Kim, I.-M. Lee, and B. Lee, “Grating-induced dual mode couplings in the negative-index slab waveguide,” IEEE Photon. Technol. Lett. 21(20), 1502–1504 (2009). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).
  21. I. M. Besieris, and A. M. Shaarawi, “Accelerating Airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046605 (2008). [CrossRef]
  22. Although we have mainly discussed the slow non-dispersing wavepackets based on metamaterial waveguides, they can also be constructed via the association with other types of slow-light modes such as those in photonic crystal waveguides. Actually, they can be preferred in practice because the propagation loss of slow wavepackets can be significantly reduced. For a comprehensive review, see T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  23. The speed of the center-of-mass position of the hybrid wavepacket remains invariant. Refer to [3] and M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979) for more details. [CrossRef]
  24. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited