OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2309–2316

Mid-infrared gas filled photonic crystal fiber laser based on population inversion

Andrew M. Jones, A. V. Vasudevan Nampoothiri, Amarin Ratanavis, Tobias Fiedler, Natalie V. Wheeler, François Couny, Rajesh Kadel, Fetah Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2309-2316 (2011)
http://dx.doi.org/10.1364/OE.19.002309


View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate for the first time an optically pumped gas laser based on population inversion using a hollow core photonic crystal fiber (HC-PCF). The HC-PCF filled with 12C2H2 gas is pumped with ~5 ns pulses at 1.52 μm and lases at 3.12 μm and 3.16 μm in the mid-infrared spectral region. The maximum measured laser pulse energy of ~6 nJ was obtained at a gas pressure of 7 torr with a fiber with 20 dB/m loss near the lasing wavelengths. While the measured slope efficiencies of this prototype did not exceed a few percent due mainly to linear losses of the fiber at the laser wavelengths, 25% slope efficiency and pulse energies of a few mJ are the predicted limits of this laser. Simulations of the laser’s behavior agree qualitatively with experimental observations.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4130) Lasers and laser optics : Molecular gas lasers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 22, 2010
Revised Manuscript: December 30, 2010
Manuscript Accepted: January 3, 2011
Published: January 24, 2011

Citation
Andrew M. Jones, A. V. Vasudevan Nampoothiri, Amarin Ratanavis, Tobias Fiedler, Natalie V. Wheeler, François Couny, Rajesh Kadel, Fetah Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph, "Mid-infrared gas filled photonic crystal fiber laser based on population inversion," Opt. Express 19, 2309-2316 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003). [CrossRef] [PubMed]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  3. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  4. J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999). [CrossRef]
  5. J. E. McCord, A. A. Ionin, S. P. Phipp, P. G. Crowell, A. I. Lampson, J. K. McIver, A. J. W. Brown, and G. D. Hager, “Frequency-tunable optically pumped carbon monoxide laser,” IEEE J. Quantum Electron. 36(9), 1041–1052 (2000). [CrossRef]
  6. H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped midinfrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994). [CrossRef]
  7. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band,” Opt. Express 18(3), 1946–1951 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1946 . [CrossRef] [PubMed]
  8. T. Y. Chang and T. J. Bridges, “Laser action at 452, 496, and 541 μm in optically pumped CH3F,” Opt. Commun. 1(9), 423–426 (1970). [CrossRef]
  9. T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972). [CrossRef]
  10. H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975). [CrossRef]
  11. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005). [CrossRef]
  12. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004). [CrossRef]
  13. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  14. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-5035 . [CrossRef] [PubMed]
  15. F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004). [CrossRef] [PubMed]
  16. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  17. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  18. J. D. Shephard, W. N. Macpherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7139 . [CrossRef] [PubMed]
  19. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17(18), 16238–16243 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16238 . [CrossRef] [PubMed]
  20. J. v. Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465 (1929).
  21. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  22. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-717 . [CrossRef] [PubMed]
  23. M. C. Heaven, J. Han, and K. Freel, “Rotational and vibrational energy transfer from the first overtone stretch of acetylene,” presented at the Sixty-fifth International Symposium on Molecular Spectroscopy, Columbus, Ohio, 21–25 June 2010.
  24. HITRAN database, http://www.cfa.harvard.edu/HITRAN/ .
  25. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000). [CrossRef]
  26. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13240 . [CrossRef] [PubMed]
  27. A. Ratanavis, N. Campbell, and W. Rudolph, “Feasibility study of optically pumped molecular lasers with small quantum defect,” Opt. Commun. 283(6), 1075–1080 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited