OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2335–2346

Nanophotonic integration in state-of-the-art CMOS foundries

Jason S. Orcutt, Anatol Khilo, Charles W. Holzwarth, Milos A. Popović, Hanqing Li, Jie Sun, Thomas Bonifield, Randy Hollingsworth, Franz X. Kärtner, Henry I. Smith, Vladimir Stojanović, and Rajeev J. Ram  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2335-2346 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongside high-density, high-performance transistors at low initial and incremental cost. We demonstrate this platform by presenting grating-coupled, microring-resonator filter banks fabricated in an unmodified 28 nm bulk-CMOS process by sharing a mask set with standard electronic projects. The lithographic fidelity of this process enables the high-throughput fabrication of second-order, wavelength-division-multiplexing (WDM) filter banks that achieve low insertion loss without post-fabrication trimming.

© 2011 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: September 8, 2010
Revised Manuscript: October 14, 2010
Manuscript Accepted: October 18, 2010
Published: January 24, 2011

Jason S. Orcutt, Anatol Khilo, Charles W. Holzwarth, Milos A. Popović, Hanqing Li, Jie Sun, Thomas Bonifield, Randy Hollingsworth, Franz X. Kärtner, Henry I. Smith, Vladimir Stojanović, and Rajeev J. Ram, "Nanophotonic integration in state-of-the-art CMOS foundries," Opt. Express 19, 2335-2346 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009). [CrossRef]
  2. M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni, “Photonic NoCs: system-level design exploration,” IEEE Micro 29(4), 74–85 (2009). [CrossRef]
  3. J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys. A 95(4), 989–997 (2009). [CrossRef]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  5. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  8. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  9. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009). [CrossRef]
  10. T.-Y. Liow, K.-W. Ang, Q. Fang, J. Song, Y. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010). [CrossRef]
  11. T. Ernst, C. Tinella, C. Raynoud, and S. Cristoloveanu, “Fringing fields in sub-0.1 μm fully depleted SOI MOSFETs: optimization of the device architecture,” Solid-State Electron. 46(3), 373–378 (2002). [CrossRef]
  12. T. Ernst, and S. Cristoloveanu, “Buried oxide fringing capacitance: a new physical model and its implication on SOI device scaling and architecture,” in Proceedings of IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 38–39.
  13. R. Koh, “Buried layer engineering to reduce the drain-induced barrier lowering of sub-0.05 µm SOI-MOSFET,” Jpn. J. Appl. Phys. 38(Part 1, No. 4B), 2294–2299 (1999). [CrossRef]
  14. N. Bresson, S. Cristoloveanu, C. Mazuré, F. Letertre, and H. Iwai, “Integration of buried insulators with high thermal conductivity in SOI MOSFETs: Thermal properties and short channel effects,” Solid-State Electron. 49(9), 1522–1528 (2005). [CrossRef]
  15. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3059 . [CrossRef] [PubMed]
  16. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” in Proceedings of IEEE Symposium on High-Performance Interconnects (Institute of Electrical and Electronics Engineers, New York 2008), pp. 190–194.
  17. D. Van Thourhout, J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, P. Binetti, X. J. M. Leijtens, R. Notzel, M. K. Smit, L. Di Cioccio, C. Lagahe, J.-M. Fedeli, and R. Baets, “A photonic interconnect layer on CMOS,” IET Digest 2007, 631 (2007).
  18. S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photon. Technol. Lett. 8(5), 644–646 (1996). [CrossRef]
  19. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits 45(1), 235–248 (2010). [CrossRef]
  20. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5118 . [CrossRef] [PubMed]
  21. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18326 . [CrossRef] [PubMed]
  22. G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s polycrystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 mu m,” Appl. Phys. Lett. 82(15), 2524–2526 (2003). [CrossRef]
  23. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010). [CrossRef]
  24. J. S. Orcutt, A. Khilo, M. A. Popovic, C. W. Holzwarth, B. Moss, H. Li, M. S. Dahlem, T. D. Bonifield, F. X. Kartner, E. P. Ippen, J. L. Hoyt, R. J. Ram, and V. Stojanovic, “Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), paper CTuBB3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuBB3
  25. J. S. Orcutt and R. J. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–548 (2010). [CrossRef]
  26. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popovic, V. Stojanovic, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CThKK5
  27. S. Sridaran and S. A. Bhave, “Nanophotonic devices on thin buried oxide Silicon-On-Insulator substrates,” Opt. Express 18(4), 3850–3857 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3850 . [CrossRef] [PubMed]
  28. N. H. Tea, V. Milanović, C. A. Zincke, J. S. Suehle, M. Gaitan, M. E. Zaghloul, and J. Geist, “Hybrid postprocessing etching for CMOS-compatible MEMS,” J. Mircroelectromech. Syst. 6(4), 363–372 (1997). [CrossRef]
  29. A. Roger, “Breaking a new sound barrier: it’s a mic-on-a-chip,” Electronic Design 54, 36 (2006).
  30. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006). [CrossRef]
  31. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  32. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” IEEE J. Lightwave Technol. 27(18), 4076–4083 (2009). [CrossRef]
  33. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects,” Opt. Express 18(5), 5151–5160 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-5-5151 . [CrossRef] [PubMed]
  34. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006). [CrossRef]
  35. C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006). [CrossRef]
  36. J. Sun, C. W. Holzwarth, M. Dahlem, J. T. Hastings, and H. I. Smith, “Accurate frequency alignment in fabrication of high-order microring-resonator filters,” Opt. Express 16(20), 15958–15963 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-20-15958 . [CrossRef] [PubMed]
  37. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  38. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, and J. M. Fedeli, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” IEEE J. Lightwave Technol. 24(10), 3810–3815 (2006). [CrossRef]
  39. B. Schmid, A. Petrov, and M. Eich, “Optimized grating coupler with fully etched slots,” Opt. Express 17(13), 11066–11076 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-13-11066 . [PubMed]
  40. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. de la Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003). [CrossRef]
  41. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” IEEE J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  42. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett. 68(15), 2052–2054 (1996). [CrossRef]
  43. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80(11), 6120–6123 (1996). [CrossRef]
  44. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29(12), 1380–1386 (2000). [CrossRef]
  45. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45 dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432. http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6425
  46. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12(3), 320–322 (2000). [CrossRef]
  47. T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1437 . [CrossRef] [PubMed]
  48. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-17-2571 . [CrossRef] [PubMed]
  49. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CPDB10
  50. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-10-9852 . [CrossRef] [PubMed]
  51. P. R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, “Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing,” IEEE Trans. Electron. Dev. 53(5), 944–964 (2006). [CrossRef]
  52. B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai, E. Francom, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer, “A 65 nm 2-billion transistor quad-core Itanium processor,” IEEE J. Solid-State Circuits 44(1), 18–31 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited