OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2448–2455

Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics

Hiroaki Furuse, Junji Kawanaka, Noriaki Miyanaga, Taku Saiki, Kazuo Imasaki, Masayuki Fujita, Kenji Takeshita, Shinya Ishii, and Yasukazu Izawa  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2448-2455 (2011)
http://dx.doi.org/10.1364/OE.19.002448


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel amplifier configuration concept for a 10 kW laser system using a zig-zag optical path based on a cryogenic Yb:YAG Total-Reflection Active-Mirror (TRAM) laser. The laser material is a compact composite ceramic, in which three Yb:YAG TRAMs are combined in series to increase the output power. Output powers of up to 214 W with a slope efficiency of 63% have been demonstrated for CW operation, even at a quite low pump intensity of less than 170 W/cm2. Further scaling could achieve output powers of more than 10 kW.

© 2011 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 19, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 21, 2011
Published: January 25, 2011

Citation
Hiroaki Furuse, Junji Kawanaka, Noriaki Miyanaga, Taku Saiki, Kazuo Imasaki, Masayuki Fujita, Kenji Takeshita, Shinya Ishii, and Yasukazu Izawa, "Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics," Opt. Express 19, 2448-2455 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).
  2. V. Gapontsev, V. Fomin, and A. Yusim, “Recent progress in scaling high power fiber lasers at IPG Photonics,” presented at the 22nd Annual Solid State and Diode Laser Technology Review, Newton, Massachusetts USA, June 29-July 2, (2009).
  3. S. J. McNauht, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW Coherently Combined Slab MOPAs,” in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2009), paper CThA1.
  4. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  5. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009). [CrossRef] [PubMed]
  6. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005). [CrossRef]
  8. D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005). [CrossRef]
  9. T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004). [CrossRef]
  10. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010). [CrossRef]
  11. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005). [CrossRef]
  12. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005). [CrossRef]
  13. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008). [CrossRef]
  14. K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008). [CrossRef] [PubMed]
  15. W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Science (Springer, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited