OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2485–2492

Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection

Tuan Guo, Allan C. L. Wong, Wei-Sheng Liu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2485-2492 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact low beat-frequency dual-polarization distributed Bragg reflector (DBR) fiber laser whose beat frequency can be varied, for high-frequency ultrasound detection has been proposed and experimentally demonstrated. The laser was fabricated in small birefringent commercial erbium-doped fiber. It operated in a robust single-longitude mode with output power of more than 1 mW and high signal-to-noise ratio better than 60 dB. Induced birefringence to the fiber during the UV inscription process is small (~10−7) and consequently the laser beats at a low frequency of ~20 MHz which is at least one order of magnitude smaller than previously reported results, making frequency down-conversion unnecessary. The beat frequency can be adjusted by controlling the side-exposure time of the UV light irradiating the gain cavity, providing a simple approach to multiplex a large number of DBR fiber lasers of different frequencies in series using frequency division multiplexing (FDM) technique. The proposed DBR fiber laser is also temperature insensitive, making it a good candidate for hydrophone applications.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 22, 2010
Revised Manuscript: November 4, 2010
Manuscript Accepted: November 15, 2010
Published: January 26, 2011

Tuan Guo, Allan C. L. Wong, Wei-Sheng Liu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam, "Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection," Opt. Express 19, 2485-2492 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, “Polarimetric fiber laser sensors,” Opt. Lett. 18(4), 317–319 (1993). [CrossRef] [PubMed]
  2. G. A. Ball, G. Meltz, and W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18(22), 1976–1978 (1993). [CrossRef] [PubMed]
  3. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13(7), 1243–1249 (1995). [CrossRef]
  4. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er(3+)-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21(22), 1869–1871 (1996). [CrossRef] [PubMed]
  5. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008). [CrossRef]
  6. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999). [CrossRef]
  7. D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O’Neill, I. Bennion, and L. Zhang, “A fibre laser hydrophone array,” Proc. SPIE 3860, 55–66 (1999). [CrossRef]
  8. S. W. Løvseth, J. T. Kringlebotn, E. Rønnekleiv, and K. Bløtekjaer, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38(22), 4821–4830 (1999). [CrossRef]
  9. K. Bohnert, A. Frank, E. Rochat, K. Haroud, and H. Brändle, “Polarimetric fiber laser sensor for hydrostatic pressure,” Appl. Opt. 43(1), 41–48 (2004). [CrossRef] [PubMed]
  10. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on fiber distributed Bragg reflector laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005). [CrossRef]
  11. S. Fostera, A. Tikhomirova, M. Englundb, H. Inglisb, G. Edvellb, and M. Milnesa, “A 16 channel fibre laser sensor array,” ACOFT/AOS 10–13 (2006).
  12. Y. Jiang, “Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array,” Appl. Opt. 46(15), 2939–2948 (2007). [CrossRef] [PubMed]
  13. L. Y. Shao, S. T. Lau, X. Y. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. L. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett. 20(8), 548–550 (2008). [CrossRef]
  14. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009). [CrossRef] [PubMed]
  15. L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982). [CrossRef]
  16. W. H. Loh, L. Dong, and J. E. Caplen, “Single-sided output Sn/Er/Yb distributed feedback fiber laser,” Appl. Phys. Lett. 69(15), 2151–2153 (1996). [CrossRef]
  17. J. Q. Sun, J. L. Qiu, and D. X. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182(1-3), 193–197 (2000). [CrossRef]
  18. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15(8), 431–433 (1990). [CrossRef] [PubMed]
  19. H. L. W. Chan, K. S. Chiang, D. C. Price, and J. L. Gardner, “The characterization of high-frequency ultrasonic fields using a polarimetric optical fiber sensor,” J. Appl. Phys. 66(4), 1565–1570 (1989). [CrossRef]
  20. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983). [CrossRef]
  21. S. C. Rashleigh and M. J. Marrone, “Temperature dependence of stress birefringence in an elliptically clad fiber,” Opt. Lett. 8(2), 127–129 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited