OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2562–2572

Ultra-short plasmonic splitters and waveguide cross-over based on coupled surface plasmon slot waveguides

Yi-Jiao Fang, Zhuo Chen, Ling Chen, Kai-Ting He, Zhen-lv Han, and Zhen-Lin Wang  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2562-2572 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Composite metal-dielectric-metal (MDM) surface plasmon polariton (SPP) structures are first proposed to realize the ultra-short optical splitters with simplified designs. The operation mechanism is based on the contra-directional coupling achieved in composite plasmonic slot waveguides. In certain cases, the switching function can also be realized. It is further shown that based on the same physical mechanism multi-dielectric-core composite MDM structures could serve as a novel plasmonic waveguide crossover component with low cross talk and high throughput.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4660) Optics in computing : Optical logic
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: November 30, 2010
Revised Manuscript: December 26, 2010
Manuscript Accepted: January 5, 2011
Published: January 26, 2011

Yi-Jiao Fang, Zhuo Chen, Ling Chen, Kai-Ting He, Zhen-lv Han, and Zhen-Lin Wang, "Ultra-short plasmonic splitters and waveguide cross-over based on coupled surface plasmon slot waveguides," Opt. Express 19, 2562-2572 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer-Verlag, Berlin, 1988).
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  6. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  7. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  8. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  9. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  11. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [CrossRef] [PubMed]
  12. J. Pan, K. T. He, Z. Chen, and Z. L. Wang, “Realization of subwavelength guiding utilizing coupled wedge plasmon polaritons in splitted groove waveguides,” Opt. Express 18(16), 16722–16732 (2010). [CrossRef] [PubMed]
  13. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006). [CrossRef] [PubMed]
  14. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  15. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 057602 (2003). [CrossRef] [PubMed]
  16. B. L. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary, transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93(11), 9386–9388 (2003). [CrossRef]
  17. A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11(20), 2502–2510 (2003). [CrossRef] [PubMed]
  18. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16(26), 21209–21214 (2008). [CrossRef] [PubMed]
  19. A. R. Davoyan, I. V. Shadrivov, S. I. Bozhevolnyi, and Y. S. Kivshar, “Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides,” J. Nanophoton. 4(1), 043509 (2010). [CrossRef]
  20. K. Halterman, J. M. Elson, and P. L. Overfelt, “Characteristics of bound modes in coupled dielectric waveguides containing negative index media,” Opt. Express 11(6), 521–529 (2003). [CrossRef] [PubMed]
  21. W. Yan, L. F. Shen, Y. Yuan, and T. J. Yang, “Interaction Between Negative and Positive Index Medium Waveguides,” J. Lightwave Technol. 26(21), 3560–3566 (2008). [CrossRef]
  22. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007). [CrossRef]
  23. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34(3), 310–312 (2009). [CrossRef] [PubMed]
  24. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14(16), 7279–7290 (2006). [CrossRef] [PubMed]
  25. W. Liu, A. A. Sukhorukov, A. E. Miroshnichenko, C. G. Poulton, Z. Y. Xu, D. N. Neshev, and Y. S. Kivshar, “Complete spectral gap in coupled dielectric waveguides embedded into metal,” Appl. Phys. Lett. 97(2), 021106 (2010). [CrossRef]
  26. K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics,” Opt. Express 14(1), 320–330 (2006). [CrossRef] [PubMed]
  27. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  28. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007). [CrossRef] [PubMed]
  29. S. Q. Zeng, Y. Zhang, B. J. Li, and E. Y.-B. Pun, “Ultrasmall optical logic gates based on silicon periodic dielectric waveguides,” Photonics Nanostruct. Fundam. Appl. 8(1), 32–37 (2010). [CrossRef]
  30. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  31. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008). [CrossRef] [PubMed]
  32. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  33. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  34. K. Iizuka, Elements of Photonics, Volume II: For Fiber and Integrated Optics, (John Wiley & Sons, New York, 2002).
  35. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef] [PubMed]
  36. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  37. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  38. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998). [CrossRef]
  39. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, “Compact and low crosstalk waveguide crossing using impedance matched metamaterial,” Appl. Phys. Lett. 96(11), 111114 (2010). [CrossRef]
  40. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited