OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2694–2701

Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T 0~510K) quantum cascade lasers

Kazuue Fujita, Shinichi Furuta, Tatsuo Dougakiuchi, Atsushi Sugiyama, Tadataka Edamura, and Masamichi Yamanishi  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2694-2701 (2011)
http://dx.doi.org/10.1364/OE.19.002694


View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm−1) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 7, 2010
Revised Manuscript: January 19, 2011
Manuscript Accepted: January 19, 2011
Published: January 27, 2011

Citation
Kazuue Fujita, Shinichi Furuta, Tatsuo Dougakiuchi, Atsushi Sugiyama, Tadataka Edamura, and Masamichi Yamanishi, "Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T0~510K) quantum cascade lasers," Opt. Express 19, 2694-2701 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-3-2694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001). [CrossRef]
  3. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002) (London). [CrossRef] [PubMed]
  4. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous High-Performance Quantum-Cascade Laser Sources for Broad-Band Tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008). [CrossRef]
  5. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009). [CrossRef]
  6. M. Geiser, C. Pflügl, A. Belyanin, Q. J. Wang, N. Yu, T. Edamura, M. Yamanishi, H. Kan, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Gain competition in dual wavelength quantum cascade lasers,” Opt. Express 18(10), 9900–9908 (2010). [CrossRef] [PubMed]
  7. J. Faist, M. Beck, T. Aellen, and E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78(2), 147–149 (2001). [CrossRef]
  8. Y. Yao, W. O. Charles, T. Tsai, J. Chen, G. Wysocki, and C. F. Gmachl, “Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design,” Appl. Phys. Lett. 96(21), 211106 (2010). [CrossRef]
  9. Y. Yao, X. Wang, J. Y. Fan, and C. F. Gmachl, “High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm[sup −1],” Appl. Phys. Lett. 97(8), 081115 (2010). [CrossRef]
  10. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010). [CrossRef]
  11. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 91(14), 141121 (2007). [CrossRef]
  12. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, “Intersubband linewidths in quantum cascade laser designs,” Appl. Phys. Lett. 93(14), 141103 (2008). [CrossRef]
  13. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, “High-Performance $8.6~m$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures,” IEEE J. Quantum Electron. 46(5), 683–688 (2010). [CrossRef]
  14. K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, and S. Furuta, “Extremely high T[sub 0]-values (∼450 K) of long-wavelength (∼15 μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme,” Appl. Phys. Lett. 97(20), 201109 (2010). [CrossRef]
  15. M. Yamanishi, K. Fujita, T. Edamura, and H. Kan, “Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values,” Opt. Express 16(25), 20748–20758 (2008). [CrossRef] [PubMed]
  16. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited