OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2702–2710

Living cell imaging by far-field fibered interference scanning optical microscopy

Jean-Baptiste Decombe, Wilfrid Schwartz, Catherine Villard, Hervé Guillou, Joël Chevrier, Serge Huant, and Jochen Fick  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2702-2710 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the imaging of biological cells including living neurons by a dedicated fibered interferometric scanning optical microscope. The topography and surface roughness of mouse fibroblasts and hippocampal neurons are clearly revealed. This straightforward far-field technique allows fast, high resolution observation of samples in liquids without lengthy alignment procedures or costly components.

© 2011 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: December 6, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 23, 2011
Published: January 27, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Jean-Baptiste Decombe, Wilfrid Schwartz, Catherine Villard, Hervé Guillou, Joël Chevrier, Serge Huant, and Jochen Fick, "Living cell imaging by far-field fibered interference scanning optical microscopy," Opt. Express 19, 2702-2710 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986). [CrossRef] [PubMed]
  2. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982). [CrossRef]
  3. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984). [CrossRef]
  4. A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007). [CrossRef]
  5. D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002). [CrossRef] [PubMed]
  6. G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 031902 (2007). [CrossRef]
  7. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006). [CrossRef] [PubMed]
  8. B. Rappaz, F. Charri`ere, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008). [CrossRef] [PubMed]
  9. J. Chevrier, S. Huant, W. Schwartz, and A. Siria, French Patent 08/59091, Université Joseph Fourier - CNRS -CEA (2008), http://www.wipo.int/pctdb/en/wo.jsp?WO=2010076540.
  10. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]
  11. P. Hoffmann, B. Dutoit, and R.-P. Salathè, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995). [CrossRef]
  12. N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006). [CrossRef]
  13. K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995). [CrossRef]
  14. A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metalcoated tips used in near-field scanning optical microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 046611 (2002). [CrossRef]
  15. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]
  16. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011). [CrossRef]
  17. O. Brzobohat’y, T. Civzm’ar, and P. Zemánek, “High quality quasi-bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008). [PubMed]
  18. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005). [CrossRef]
  19. H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008). [CrossRef]
  20. B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010). [CrossRef] [PubMed]
  21. D. Leahy, I. Aukhil, and H. Erickson, “2.0 °a crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996). [CrossRef] [PubMed]
  22. C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988). [PubMed]
  23. Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006). [CrossRef] [PubMed]
  24. D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993). [CrossRef] [PubMed]
  25. L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets: Field effect nano-transistors fabrication for neural recording,” In: Stett A (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-W¨urttemberg GmbH 2010; 342–343 (2010).
  26. G. Kim, “A mechanical spike accompanies the action potential in mammalian nerve terminals,” Biophys. J. 92, 3122–3129 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited