OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2748–2753

Quantitative phase retrieval with picosecond X-ray pulses from the ATF Inverse Compton Scattering source

M. Endrizzi, T. E. Gureyev, P. Delogu, P. Oliva, B. Golosio, M. Carpinelli, I. Pogorelsky, V. Yakimenko, and U. Bottigli  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2748-2753 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantitative phase retrieval is experimentally demonstrated using the Inverse Compton Scattering X-ray source available at the Accelerator Test Facility (ATF) in the Brookhaven National Laboratory. Phase-contrast images are collected using in-line geometry, with a single X-ray pulse of approximate duration of one picosecond. The projected thickness of homogeneous samples of various polymers is recovered quantitatively from the time-averaged intensity of transmitted X-rays. The data are in good agreement with the expectations showing that ATF Inverse Compton Scattering source is suitable for performing phase-sensitive quantitative X-ray imaging on the picosecond scale. The method shows promise for quantitative imaging of fast dynamic phenomena.

© 2011 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(170.0110) Medical optics and biotechnology : Imaging systems

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 2, 2010
Revised Manuscript: November 25, 2010
Manuscript Accepted: November 27, 2010
Published: January 31, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

M. Endrizzi, T. E. Gureyev, P. Delogu, P. Oliva, B. Golosio, M. Carpinelli, I. Pogorelsky, V. Yakimenko, and U. Bottigli, "Quantitative phase retrieval with picosecond X-ray pulses from the ATF Inverse Compton Scattering source," Opt. Express 19, 2748-2753 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ikeura-Sekiguchi, R. Kuroda, M. Yasumoto, H. Toyokawa, M. Koike, K. Yamada, F. Sakai, K. Mori, K. Maruyama, H. Oka, and T. Kimata, "In-line phase-contrast imaging of a biological specimen using a compact laser-compton scattering-based x-ray source," Appl. Phys. Lett. 92, 131107 (2008). [CrossRef]
  2. P. Oliva, B. Golosio, S. Stumbo, A. Bravin, and P. Tomassini, "Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality," Med. Phys. 36, 5149-5161 (2009). [CrossRef] [PubMed]
  3. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, "On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation," Rev. Sci. Instrum. 66, 5486-5492 (1995). [CrossRef]
  4. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, "Phase-contrast imaging using polychromatic hard x-rays," Nature 384, 335-338 (1996). [CrossRef]
  5. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, "Phase objects in synchrotron radiation hard x-ray imaging," J. Phys. D Appl. Phys. 29, 133 (1996). [CrossRef]
  6. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, "Quantitative phase imaging using hard x rays," Phys. Rev. Lett. 77, 2961-2964 (1996). [CrossRef] [PubMed]
  7. R. Fitzgerald, "Phase-sensitive x-ray imaging," Phys. Today 53, 23-26 (2000). [CrossRef]
  8. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, "X-ray phasecontrast microscopy and microtomography," Opt. Express 11, 2289-2302 (2003). [CrossRef] [PubMed]
  9. I. V. Pogorelsky, I. Ben-Zvi, T. Hirose, S. Kashiwagi, V. Yakimenko, K. Kusche, P. Siddons, J. Skaritka, T. Kumita, A. Tsunemi, T. Omori, J. Urakawa, M. Washio, K. Yokoya, T. Okugi, Y. Liu, P. He, and D. Cline, "Demonstration of 8×1018 photons/second peaked at 1.8 °a in a relativistic thomson scattering experiment," Phys. Rev. ST Accel. Beams 3, 090702 (2000). [CrossRef]
  10. P. Oliva, M. Carpinelli, B. Golosio, P. Delogu, M. Endrizzi, J. Park, I. Pogorelsky, V. Yakimenko, O. Williams, and J. Rosenzweig, "Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton x-ray source," Appl. Phys. Lett. 97, 134104 (2010). [CrossRef]
  11. O. Williams, G. Andonian, M. Babzien, E. Hemsing, K. Kusche, J. Park, I. Pogorelsky, G. Priebe, J. Rosenzweig, and V. Yakimenko, "Characterization results of the bnl atf compton x-ray source using k-edge absorbing foils," Nucl. Instrum. Methods Phys. Res. A 608, S18-S22 (2009). Compton sources for X/[gamma] rays: Physics and applications. [CrossRef]
  12. E. Esarey, S. K. Ride, and P. Sprangle, "Nonlinear thomson scattering of intense laser pulses from beams and plasmas," Phys. Rev. E 48, 3003-3021 (1993). [CrossRef]
  13. W. J. Brown, S. G. Anderson, C. P. J. Barty, S. M. Betts, R. Booth, J. K. Crane, R. R. Cross, D. N. Fittinghoff, D. J. Gibson, F. V. Hartemann, E. P. Hartouni, J. Kuba, G. P. Le Sage, D. R. Slaughter, A. M. Tremaine, A. J. Wootton, P. T. Springer, and J. B. Rosenzweig, "Experimental characterization of an ultrafast thomson scattering x-ray source with three-dimensional time and frequency-domain analysis," Phys. Rev. ST Accel. Beams 7, 060702 (2004). [CrossRef]
  14. W. J. Brown, and F. V. Hartemann, "Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through thomson scattering," Phys. Rev. ST Accel. Beams 7, 060703 (2004). [CrossRef]
  15. T. E. Gureyev, "Transport of intensity equation for beams in arbitrary state of temporal and spatial coherence," Optik 110, 263-266 (1999).
  16. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object," J. Microsc. 206, 33-40 (2002). [CrossRef] [PubMed]
  17. U. W. Arndt, and B. T. M. Willis, Single Crystal Diffractometry (Cambridge University Press, Cambridge, 1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited