OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 3 — Jan. 31, 2011
  • pp: 2797–2804

Femtosecond crystallographic experiment in wide-bandgap LiF crystal

Hatem Dachraoui, Christian Oberer, and Ulrich Heinzmann  »View Author Affiliations

Optics Express, Vol. 19, Issue 3, pp. 2797-2804 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a femtosecond crystallographic study of the dependence of the free-carries generation to the alignment of a crystalline sample to the laser polarization. The probe pulse transmission exhibits a π/2 modulation that is shown to be correlated with the direction dependence of the effective electron mass. This observation suggests that nonlinear ionization is the first channel for free electron generation during the laser pulse. Moreover, the temporal evolution of the probe pulse transmission indicates the dominance of the avalanche ionization and that nonlinear ionization provides the initial seed electrons for avalanche.”

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: November 30, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 21, 2011
Published: January 28, 2011

Hatem Dachraoui, Christian Oberer, and Ulrich Heinzmann, "Femtosecond crystallographic experiment in wide-bandgap LiF crystal," Opt. Express 19, 2797-2804 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. D. Jones and H. R. Reiss, “Intense-field effects in solids,” Phys. Rev. B 16(6), 2466–2473 (1977). [CrossRef]
  2. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000). [CrossRef]
  3. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004). [CrossRef] [PubMed]
  4. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973). [CrossRef]
  5. A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: Numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005). [CrossRef]
  6. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996). [CrossRef]
  7. F. Quéré, S. Guizard, and Ph. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” EPL 56(1), 138–144 (2001). [CrossRef]
  8. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett. 97(23), 237403 (2006). [CrossRef]
  9. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  10. P. P. Rajeev, M. Gertsvolf, P. B. Corkum, and D. M. Rayner, “Field dependent avalanche ionization rates in dielectrics,” Phys. Rev. Lett. 102(8), 083001 (2009). [CrossRef] [PubMed]
  11. H. X. Deng, X. T. Zu, X. Xiang, and K. Sun, “Quantum theory for cold avalanche ionization in solids,” Phys. Rev. Lett. 105(11), 113603 (2010). [CrossRef] [PubMed]
  12. M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008). [CrossRef] [PubMed]
  13. H. Dachraoui, R. A. Rupp, K. Lengyel, M. A. Ellabban, M. Fally, G. Corradi, L. Kovács, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B 74(14), 144104 (2006). [CrossRef]
  14. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  15. B. Ridley, Quantum Processes in Semiconductors, O. 1. (Clarendon, ed., (1993).
  16. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO2,” Phys. Rev. B 81(21), 212301 (2010). [CrossRef]
  17. V. Dauer, “Optical constants of lithium fluoride thin films in the far ultraviolet,” J. Opt. Soc. Am. B 17(2), 300–303 (2000). [CrossRef]
  18. P. Abbamonte, T. Graber, J. P. Reed, S. Smadici, C. L. Yeh, A. Shukla, J. P. Rueff, and W. Ku, “Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering,” Proc. Natl. Acad. Sci. U.S.A. 105(34), 12159–12163 (2008). [CrossRef] [PubMed]
  19. J. M. Adams, S. Evans, and J. M. Thomas, “The valence band of lithium fluoride,” J. Phys. C Solid State Phys. 6(20), 382 (1973). [CrossRef]
  20. H. Dachraoui, R. A. Rupp, K. Lengyel, M. A. Ellabban, M. Fally, G. Corradi, L. Kovács, and L. Ackermann, “Photochromism of doped terbium gallium garnet,” Phys. Rev. B 74(14), 144104 (2006). [CrossRef]
  21. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41(18), 3735–3742 (2002). [CrossRef] [PubMed]
  22. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999). [CrossRef]
  23. M. Gertsvolf, M. Spanner, D. Rayner, and P. Corkum, “Demonstration of attosecond ionization dynamics inside transparent solids,” J. Phys. At. Mol. Opt. Phys. 43(13), 131002 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited