OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2886–2894

Effect of current spreading on the efficiency droop of InGaN light-emitting diodes

Han-Youl Ryu and Jong-In Shim  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2886-2894 (2011)
http://dx.doi.org/10.1364/OE.19.002886


View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effects of current spreading on the efficiency droop of InGaN blue light-emitting diodes with lateral injection geometry based on numerical simulation. Current crowding near the mesa edge and the decrease in the current spreading length with current density are shown to cause significant efficiency droop. It is found that the efficiency droop can be reduced considerably as the uniformity of current spreading is improved by increasing the resistivity of the p-type current spreading layer or decreasing the sheet resistance of the n-GaN layer. The droop reduction is well interpreted by the uniformity of carrier distribution in the plane of quantum wells.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

History
Original Manuscript: December 22, 2010
Revised Manuscript: January 15, 2011
Manuscript Accepted: January 19, 2011
Published: January 31, 2011

Citation
Han-Youl Ryu and Jong-In Shim, "Effect of current spreading on the efficiency droop of InGaN light-emitting diodes," Opt. Express 19, 2886-2894 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3(2), 160–175 (2007). [CrossRef]
  3. G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Gotz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 205(5), 1086–1092 (2008). [CrossRef]
  4. J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16(26), 21835–21842 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21835 . [CrossRef] [PubMed]
  5. M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009). [CrossRef]
  6. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and high-efficiency InGaN-based light emitters,” IEEE Trans. Electron. Dev. 57(1), 79–87 (2010). [CrossRef]
  7. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 207(10), 2217–2225 (2010). [CrossRef]
  8. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007). [CrossRef]
  9. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 183507 (2007). [CrossRef]
  10. B. Monemar and B. E. Sernelius, “Defect related issues in the “current roll-off” in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18), 181103 (2007). [CrossRef]
  11. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96(22), 221106 (2010). [CrossRef]
  12. X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells,” Appl. Phys. Lett. 93(17), 171113 (2008). [CrossRef]
  13. H. Y. Ryu, H. S. Kim, and J. I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett. 95(8), 081114 (2009). [CrossRef]
  14. J. H. Son and J. L. Lee, “Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes,” Opt. Express 18(6), 5466–5471 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5466 . [CrossRef] [PubMed]
  15. E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diodes,” Appl. Phys. Lett. 90(3), 031102 (2007). [CrossRef]
  16. J. H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner, D. Yoo, and R. D. Dupuis, “Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light–emitting diodes,” IEEE Photon. Technol. Lett. 20(21), 1769–1771 (2008). [CrossRef]
  17. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008). [CrossRef]
  18. H. Y. Ryu and K. H. Ha, “Effect of active-layer structures on temperature characteristics of InGaN blue laser diodes,” Opt. Express 16(14), 10849–10857 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10849 . [CrossRef] [PubMed]
  19. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93(12), 121107 (2008). [CrossRef]
  20. S. Hwang and J. Shim, “A method for current spreading analysis and electrode pattern design in light-emitting diode,” IEEE Trans. Electron. Dev. 55(5), 1123–1128 (2008). [CrossRef]
  21. H. Kim and S. N. Lee, “Theoretical considerations on current spreading in GaN-based light emitting diodes fabricated with top-emission geometry,” J. Electrochem. Soc. 157(5), H562 (2010). [CrossRef]
  22. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), chap. 8.
  23. APSYS by Crosslight Software, Inc., Burnaby, Canada, http://www.crosslight.com
  24. J. R. Chen, Y. C. Wu, S. C. Ling, T. S. Ko, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C. Wang, “Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes,” Appl. Phys. B 98(4), 779–789 (2010). [CrossRef]
  25. M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, “Direct measurement of auger recombination in InGaN/GaN quantum wells and its impoact on the efficiency of InGaN/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 95(20), 201108 (2009). [CrossRef]
  26. A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96(10), 103504 (2010). [CrossRef]
  27. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of therecombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys. 106(11), 114508 (2009). [CrossRef]
  28. H. Kim, D. S. Shin, H. Y. Ryu, and J. I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010). [CrossRef]
  29. B. Hahn, A. Weimar, M. Peter, and J. Baur, “High-powe InGaN LEDs: present status and future prospects,” Proc. SPIE 6910, 691004, 691004-8 (2008). [CrossRef]
  30. Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, and T. Mukai, “Recent progress of high efficiency white LEDs,” Phys. Status Solidi., A Appl. Mater. Sci. 204(6), 2087–2093 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited