OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 2941–2951

Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device

Francesco G. Della Corte, Sandro Rao, Giuseppe Coppola, and Caterina Summonte  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 2941-2951 (2011)
http://dx.doi.org/10.1364/OE.19.002941


View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 μm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the first time, effective electro-optical modulation in a reverse biased a-Si:H p-i-n waveguiding structure. In particular, phase modulation was studied in a waveguide integrated Fabry-Perot resonator in which the Vπ⋅Lπ product was determined to be 63 V⋅cm. Characteristic switch-on and switch-off times of 14 ns were measured. The device employed a wider gap amorphous silicon carbide (a-SiC:H) film for the lower cladding layer instead of silicon oxide. In this way the highest temperature involved in the fabrication process was 170°C, which ensured the desired technological compatibility with CMOS processes.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3130) Materials : Integrated optics materials
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: November 29, 2010
Revised Manuscript: December 31, 2010
Manuscript Accepted: January 7, 2011
Published: February 1, 2011

Citation
Francesco G. Della Corte, Sandro Rao, Giuseppe Coppola, and Caterina Summonte, "Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device," Opt. Express 19, 2941-2951 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-2941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006). [CrossRef]
  2. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).
  3. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Tech. 2008, 1–16 (2008). [CrossRef]
  4. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, and C. Seassal, P. RojoRomeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference (2006).
  5. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153(12), G1015–G1019 (2006). [CrossRef]
  6. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron. 18(S1), 15–19 (2007). [CrossRef]
  7. G. Cocorullo, F. G. Della Corte, R. de Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998). [CrossRef]
  8. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005). [CrossRef]
  9. D. K. Sparacin, R. Sun, A. Agarwal, M. Beals, J. Michel, L. C. Kimerling, T. Conway, A. Pomerene, D. Carothers, M. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, “Low loss amorphous silicon channel waveguides for integrated photonics,” in Proceedings of IEEE Conference on Group IV Photonics, 3rd International Conference 255–257 (2006).
  10. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009). [CrossRef]
  11. A. Khanna, M. Mulot, A. Säynätjoki, S. Honkanen, H. Lipsanen, S. Arpiainen, and J. Ahopelto, “Amorphous silicon optical waveguides and Bragg mirrors,” Proc. SPIE 6996, (2008).
  12. C. Summonte, F. G. Della Corte, M. A. Nigro, and A. Desalvo, “Photoinduced absorption in B-doped hydrogenated amorphous silicon alloys applied to all-optical modulators,” J. Appl. Phys. 103(2), 023107 (2008). [CrossRef]
  13. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14(12), 5266–5278 (2006). [CrossRef] [PubMed]
  14. F. Cantore and F. G. Della Corte, “1.55-μm silicon-based reflection-type waveguide integrated thermo-optic switch,” Opt. Eng. 42(10), 2835–2840 (2003). [CrossRef]
  15. F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008). [CrossRef] [PubMed]
  16. S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010). [CrossRef]
  17. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008). [CrossRef]
  18. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  19. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  20. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.
  21. E. Centurioni, “Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers,” Appl. Opt. 44(35), 7532–7539 (2005). [CrossRef] [PubMed]
  22. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20(8), 1333–1344 (1981). [CrossRef] [PubMed]
  23. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1–2), 43–49 (2002). [CrossRef]
  24. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-Si02,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991). [CrossRef]
  25. W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17(9), 1193–1196 (1975). [CrossRef]
  26. S. Rao, F. G. Della Corte, and C. Summonte, “Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact,” in Proceedings of the 15th IEEE Mediterranean Electrotechnical Conference (2010).
  27. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  28. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008). [CrossRef] [PubMed]
  29. G. Ganguly, D. E. Carlson, S. S. Hegedus, D. Ryan, R. G. Gordon, D. Pang, and R. C. Reedy, “Improved fill factors in amorphous silicon solar cells on zinc oxide by insertion of a germanium layer to block impurity incorporation,” Appl. Phys. Lett. 85(3), 479–481 (2004). [CrossRef]
  30. F. Blecher, B. Schneider, J. Sterzel, M. Hillebrand, S. Benthien, and M. Böhma, “Noise analysis of imagers with a-Si:H pin diode pixels,” J. Non-Cryst. Solids 266–269, 1188–1192 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited