OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3086–3105

Robust detection scheme on noise and phase jump for phase maps of objects with height discontinuities-theory and experiment

Jing-Feng Weng and Yu-Lung Lo  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3086-3105 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1719 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes a robust noise and phase jump detection scheme for noisy phase maps containing height discontinuities. The detection scheme has two primary functions, namely to detect the positions of noise and to locate the positions of the phase jumps. Generally speaking, the removal of noise from a wrapped phase map causes a smearing of the phase jumps and therefore leads to a loss of definition in the unwrapped phase map. However, in the proposed scheme, the boundaries of the phase jump regions are preserved during the noise detection process. The validity of the proposed approach is demonstrated using the simulated and experimental wrapped phase maps of a 3D object containing height discontinuities, respectively. It is shown that the noise and phase jump detection scheme enables the precise and efficient detection of three different types of noise, namely speckle noise, residual noise, and noise at the lateral surfaces of the height discontinuities. Therefore, the proposed scheme represents an ideal solution for the pre-processing of noisy wrapped phase maps prior to their treatment using a filtering algorithm and phase unwrapping algorithm.

© 2011 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

Original Manuscript: November 3, 2010
Revised Manuscript: January 25, 2011
Manuscript Accepted: January 30, 2011
Published: February 2, 2011

Jing-Feng Weng and Yu-Lung Lo, "Robust detection scheme on noise and phase jump for phase maps of objects with height discontinuities-theory and experiment," Opt. Express 19, 3086-3105 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24(18), 3053–3058 (1985). [CrossRef] [PubMed]
  2. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987). [CrossRef] [PubMed]
  3. B. F. Pouet and S. Krishnaswamy, “Technique for the removal of speckle phase in electronic speckle interferometry,” Opt. Lett. 20(3), 318–320 (1995). [CrossRef] [PubMed]
  4. I. Moon and B. Javidi, “Three-dimensional speckle-noise reduction by using coherent integral imaging,” Opt. Lett. 34(8), 1246–1248 (2009). [CrossRef] [PubMed]
  5. M. J. Huang and J. K. Liou, “Retrieving ESPI map of discontinuous objects via a novel phase unwrapping algorithm,” Strain 44(3), 239–247 (2008). [CrossRef]
  6. E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009). [CrossRef] [PubMed]
  7. W. H. Su, K. Shi, Z. Liu, B. Wang, K. Reichard, and S. Yin, “A large-depth-of-field projected fringe profilometry using supercontinuum light illumination,” Opt. Express 13(3), 1025–1032 (2005). [CrossRef] [PubMed]
  8. P. Potuluri, M. Fetterman, and D. Brady, “High depth of field microscopic imaging using an interferometric camera,” Opt. Express 8(11), 624–630 (2001). [CrossRef] [PubMed]
  9. H. O. Saldner and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36(13), 2770–2775 (1997). [CrossRef] [PubMed]
  10. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25(12), 3013–3020 (2008). [CrossRef]
  11. R. Yamaki and A. Hirose, “Singularity-Spreading Phase Unwrapping,” IEEE Trans. Geosci. Rem. Sens. 45(10), 3240–3251 (2007). [CrossRef]
  12. H. A. Aebischery and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun. 162(4–6), 205–210 (1999). [CrossRef]
  13. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32(17), 3047–3052 (1993). [CrossRef] [PubMed]
  14. D. S. Mehta, S. K. Dubey, M. M. Hossain, and C. Shakher, “Simple multifrequency and phase-shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry,” Appl. Opt. 44(35), 7515–7521 (2005). [CrossRef] [PubMed]
  15. S. Zhang, X. L. Li, and S. T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46(1), 50–57 (2007). [CrossRef]
  16. W. W. Macy., “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22(23), 3898–3901 (1983). [CrossRef] [PubMed]
  17. D. C. Ghiglia, G. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4(1), 267–280 (1987). [CrossRef]
  18. A. Spik and D. W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Opt. Lasers Eng. 14(1), 25–37 (1991). [CrossRef]
  19. H. Y. Chang, C. W. Chen, C. K. Lee, and C. P. Hu, “The Tapestry Cellular Automata phase unwrapping algorithm for interferogram analysis,” Opt. Lasers Eng. 30(6), 487–502 (1998). [CrossRef]
  20. B. Marendic, Y. Yang, and H. Stark, “Phase unwrapping using an extrapolation-projection algorithm,” J. Opt. Soc. Am. A 23(8), 1846–1855 (2006). [CrossRef]
  21. S. Yuqing, “Robust phase unwrapping by spinning iteration,” Opt. Express 15(13), 8059–8064 (2007). [CrossRef] [PubMed]
  22. O. S. Dalmau-Cedeño, M. Rivera, and R. Legarda-Saenz, “Fast phase recovery from a single closed-fringe pattern,” J. Opt. Soc. Am. A 25(6), 1361–1370 (2008). [CrossRef]
  23. A. Hooper and H. A. Zebker, “Phase unwrapping in three dimensions with application to InSAR time series,” J. Opt. Soc. Am. A 24(9), 2737–2747 (2007). [CrossRef]
  24. K. Liu, Y. C. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express 18(5), 5229–5244 (2010). [CrossRef] [PubMed]
  25. A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng. 36(9), 2466–2472 (1997). [CrossRef]
  26. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28(16), 3268–3270 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited