OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3144–3154

Ordering in stretch-tunable polymeric opal fibers

Chris E. Finlayson, Chris Goddard, Elpida Papachristodoulou, David R.E. Snoswell, Andreas Kontogeorgos, Peter Spahn, G.P. Hellmann, Ortwin Hess, and Jeremy J. Baumberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3144-3154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the production of high-quality polymer opal fibers in an industrially-scalable process. These fibers exhibit structural color, based on the self-assembly of sub-micron core-shell particles, with a spectrum which is stretch-tunable across the visible region. The internal substructure and ordering of fibers, as inferred from variations in spectral bandwidth, is studied using dark-field microscopy. We employ a granular model to examine flow and shear forces during the extrusion process, and the effects on particle ordering. In both theory and experiment, a concentric zone of the fiber near the exposed surface develops particularly strong structural color. Such elastically-tuned structurally colored fibers are of interest for many applications.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 7, 2011
Manuscript Accepted: January 20, 2011
Published: February 2, 2011

Chris E. Finlayson, Chris Goddard, Elpida Papachristodoulou, David R.E. Snoswell, Andreas Kontogeorgos, Peter Spahn, G.P. Hellmann, Ortwin Hess, and Jeremy J. Baumberg, "Ordering in stretch-tunable polymeric opal fibers," Opt. Express 19, 3144-3154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ruhl, P. Spahn, and G. P. Hellmann, “Artificial opals prepared by melt compression,” Polymer (Guildf.) 44(25), 7625–7634 (2003). [CrossRef]
  2. O. L. J. Pursiainen, J. J. Baumberg, K. Ryan, J. Bauer, H. Winkler, B. Viel, and T. Ruhl, “Compact strain-sensitive flexible photonic crystals for sensors,” Appl. Phys. Lett. 87(10), 101902 (2005). [CrossRef]
  3. B. Viel, T. Ruhl, and G. P. Hellmann, “Reversible deformation of opal elastomers,” Chem. Mater. 19(23), 5673–5679 (2007). [CrossRef]
  4. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9553 . [CrossRef] [PubMed]
  5. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Shear-induced organization in flexible polymer opals,” Adv. Mater. 20(8), 1484–1487 (2008). [CrossRef]
  6. D. R. E. Snoswell, A. Kontogeorgos, J. J. Baumberg, T. D. Lord, M. R. Mackley, P. Spahn, and G. P. Hellmann, “Shear ordering in polymer photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 020401 (2010). [CrossRef] [PubMed]
  7. B. J. Ackerson and P. N. Pusey, “Shear-induced order in suspensions of hard spheres,” Phys. Rev. Lett. 61(8), 1033–1036 (1988). [CrossRef] [PubMed]
  8. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414(6861), 289–293 (2001). [CrossRef] [PubMed]
  9. M. D. Haw, W. C. K. Poon, and P. N. Pusey, “Direct observation of oscillatory-shear-induced order in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6859–6864 (1998). [CrossRef]
  10. R. De La Rue, “Photonic crystals: Microassembly in 3D,” Nat. Mater. 2(2), 74–76 (2003). [CrossRef] [PubMed]
  11. J. J. Baumberg, O. L. Pursiainen, and P. Spahn, “Resonant optical scattering in nanoparticle-doped polymer photonic crystals,” Phys. Rev. B 80(20), 201103 (2009). [CrossRef]
  12. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003). [CrossRef] [PubMed]
  13. Strain, e, where e = 100% x Δl/l, or % increase in length.
  14. A. Kontogeorgos, D. R. Snoswell, C. E. Finlayson, J. J. Baumberg, P. Spahn, and G. P. Hellmann, “Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals,” Phys. Rev. Lett. 105(23), 233909 (2010). [CrossRef]
  15. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express 18(5), 4356–4364 (2010). [CrossRef] [PubMed]
  16. C. E. Finlayson, P. Spahn, D. R. E. Snoswell, G. Yates, A. Kontogeorgos, A. I. Haines, G. P. Hellmann, and J. J. Baumberg, “3D bulk-ordering in macroscopic solid opaline films by edge-induced rotational-shearing,” Adv. Mater. doi 10.1002/adma.201003934 (to be published). [PubMed]
  17. J. Batchelor, J. P. Berry, and F. Horsfall, “Die swell in elastic and viscous fluids,” Polymer (Guildf.) 14(7), 297–299 (1973). [CrossRef]
  18. P. C. Hiemenz, and T. P. Lodge, in Polymer Chemistry, 2nd ed. (CRC Press, London, 2007) [PubMed]
  19. T. Ruhl and G. P. Hellmann, “Colloidal crystals in latex films: Rubbery opals,” Macromol. Chem. Phys. 202(18), 3502–3505 (2001). [CrossRef]
  20. L. Verlet, “Computer ’Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159(1), 98–103 (1967). [CrossRef]
  21. L. Verlet, “Computer ’Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev. 165(1), 201–214 (1968). [CrossRef]
  22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81(8), 3684–3690 (1984). [CrossRef]
  23. M. Oda, and K. Iwashita, in Mechanics of granular materials: an introduction (Taylor & Francis, London, 1999)
  24. T. Ruhl, P. Spahn, H. Winkler, and G. P. Hellmann, “Large Area Monodomain Order in Colloidal Crystals,” Macromol. Chem. Phys. 205(10), 1385–1393 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited