OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3218–3225

The metal-clad semiconductor nanoring laser and its scaling properties

Min W. Kim and Pei-Cheng Ku  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3218-3225 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a metal-clad semiconductor nanoring laser structure that exhibited a superior scaling properties for D/λ0 > 0.5 where D is the device diameter. We theoretically analyzed the metal-cald nanoring laser and compared its scaling properties with two other similar nanolaser structures. We found that the two design parameters, namely the ring width and the ring diameter, enable independent emission wavelength control from device dimension. This property in combination with other desirable features including in-plane out-coupling and monolithic integration make the metal-clad nanoring laser highly attractive for photonic integration.

© 2011 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: December 3, 2010
Revised Manuscript: January 9, 2011
Manuscript Accepted: January 23, 2011
Published: February 3, 2011

Min W. Kim and Pei-Cheng Ku, "The metal-clad semiconductor nanoring laser and its scaling properties," Opt. Express 19, 3218-3225 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk laser,” Appl. Phys. Lett. 60(3), 289–292 (1992). [CrossRef]
  2. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  3. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007). [CrossRef]
  4. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808–830 (1997). [CrossRef]
  5. J. Topol’ancik, S. Chakravarty, P. Bhattacharya, and S. Chakrabarti, “Electrically injected quantum-dot photonic crystal microcavity light sources,” Opt. Lett. 31(2), 232–234 (2006). [CrossRef] [PubMed]
  6. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  7. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002). [CrossRef]
  8. P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006). [CrossRef] [PubMed]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007). [CrossRef] [PubMed]
  10. S.-W. Chang, and S.-L. Chuang, “Plasmonic nanolaser based on metallic bowtie cavity,” Conference on Lasers and Electro-Optics (CLEO), QTuJ5, 2008.
  11. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  12. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  14. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  15. M. W. Kim, Y.-H. Chen, J. Moore, Y.-K. Wu, L. J. Guo, P. Bhattacharya, and P.-C. Ku, “Subwavelength surface plasmon optical cavity – scaling, amplification and coherence,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1521–1528 (2009). [CrossRef]
  16. D. R. Scifres, R. D. Burnham, and W. Streifer, “Grating-coupled GaAs single heterostructure ring laser,” Appl. Phys. Lett. 28(11), 681 (1976). [CrossRef]
  17. N. Matsumoto and K. Kumabe, “AlGaAs-GaAs Semiconductor Ring Laser,” Jpn. J. Appl. Phys. 16(8), 1395–1398 (1977). [CrossRef]
  18. G. Sorel, G. Giuliani, A. Scire, R. Miglierina, S. Donati, P. J. R. Laybourn, M Giuliani, A Scire, R Miglieria, S Donati, and P. J. R Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: Experiment and model,” IEEE J. Quantum Electron. 39(10), 1187–1195 (2003). [CrossRef]
  19. L. Gelens, S. Beri, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Exploring multistability in semiconductor ring lasers: theory and experiment,” Phys. Rev. Lett. 102(19), 193904 (2009). [CrossRef] [PubMed]
  20. W. Coomans, S. Beri, G. Van der Sande, L. Gelens, and J. Danckaert, “Optical injection in semiconductor ring lasers,” Phys. Rev. A 81(3), 033802 (2010). [CrossRef]
  21. T. Baba, “Photonic crystal and microdisk cavities based on GaInAsP-InP systems,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808–830 (1997). [CrossRef]
  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  23. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys . 107(17), 6756–6769 (1997). Erratum, ibid.109(10), 4128 (1998) [CrossRef]
  24. T. P. Moffat, D. Wheeler, M. D. Edelstein, and D. Josell, “Superconformal film growth: mechanism and quantification,” IBM J. Res. Develop. 49(1), 19–36 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited