OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3236–3250

Numerical study for selective excitation of Mathieu-Gauss modes in end-pumped solid-state laser systems

Shu-Chun Chu and Ko-Fan Tsai  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3236-3250 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study reports a possible first systematic approach to the selective excitations of all Mathieu-Gauss modes (MGMs) in end-pumped solid-state lasers with a new kind of axicon-based stable laser resonator. The study classifies MGMs into two categories, and explores and verifies the approach to excite each MGM category using numerical simulations. Controlling both the “cavity mode gain” and the “cavity conical asymmetry” of the axicon-based stable laser resonator achieves the proposed selective MGM-excitation approach.

© 2011 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 20, 2010
Revised Manuscript: January 24, 2011
Manuscript Accepted: January 24, 2011
Published: February 3, 2011

Shu-Chun Chu and Ko-Fan Tsai, "Numerical study for selective excitation of Mathieu-Gauss modes in end-pumped solid-state laser systems," Opt. Express 19, 3236-3250 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987). [CrossRef]
  2. J. Durnin, J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  3. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef]
  4. C. A. Dartora and H. E. Hernández-Figueroa, “Properties of a localized Mathieu pulse,” J. Opt. Soc. Am. A 21(4), 662–667 (2004). [CrossRef]
  5. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett. 31(2), 238–240 (2006). [CrossRef] [PubMed]
  6. C. López-Mariscal, J. C. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical Mathieu beams,” Opt. Express 14(9), 4182–4187 (2006). [CrossRef] [PubMed]
  7. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64(6), 491–495 (1987). [CrossRef]
  8. J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz–Gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005). [CrossRef]
  9. V. Kollarova, T. Medrik, R. Celechovsky, Z. Bouchal, O. Wilfert, and Z. Kolka, “Application of nondiffracting beams to wireless optical communications,” Proc. SPIE 6736, 67361C, 67361C-9 (2007). [CrossRef]
  10. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006). [CrossRef]
  11. E. Mcleod, AndC. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef] [PubMed]
  12. K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216(1-3), 99–103 (2003). [CrossRef]
  13. L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18(23), 24287–24292 (2010). [CrossRef] [PubMed]
  14. V. Garce´s-Cha´vez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia,“Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003). [CrossRef]
  15. M. B. Alvarez-Elizondo, R. Rodríguez-Masegosa, and J. C. Gutiérrez-Vega, “Generation of Mathieu-Gauss modes with an axicon-based laser resonator,” Opt. Express 16(23), 18770–18775 (2008). [CrossRef]
  16. K. Tokunaga, S.-C. Chu, H.-Y. Hsiao, T. Ohtomo, and K. Otsuka, “Spontaneous Mathieu-Gauss mode oscillation in micro-grained Nd:YAG ceramic lasers with azimuth laser-diode pumping,” Laser Phys. Lett. 6(9), 635–638 (2009). [CrossRef]
  17. The Language of Technical Computing, See http://www.mathworks.com/ .
  18. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis,” J. Opt. Soc. Am. A 20(11), 2113–2122 (2003). [CrossRef]
  19. S.-C. Chu and K. Otsuka, “Numerical study for selective excitation of Ince-Gaussian modes in end-pumped solid-state lasers,” Opt. Express 15(25), 16506–16519 (2007). [CrossRef] [PubMed]
  20. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional Simulation of an Unstable Resonator with a Stable Core,” Appl. Opt. 38(15), 3298–3307 (1999). [CrossRef]
  21. M. Endo, “Numerical simulation of an optical resonator for generation of a doughnut-like laser beam,” Opt. Express 12(9), 1959–1965 (2004). [CrossRef] [PubMed]
  22. A. Bhowmik, “Closed-cavity solutions with partially coherent fields in the space-frequency domain,” Appl. Opt. 22(21), 3338 (1983). [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004), Chap. 4.
  24. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004) pp.97–101.
  25. T. Ohtomo, K. Kamikariya, K. Otsuka, and S. -C. Chu, “Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers,” Opt. Express 15(17), 10705–10717 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1322 KB)     
» Media 2: MOV (613 KB)     
» Media 3: MOV (998 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited