OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3339–3346

Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval

Hidenosuke Itoh, Kentaro Nagai, Genta Sato, Kimiaki Yamaguchi, Takashi Nakamura, Takeshi Kondoh, Chidane Ouchi, Takayuki Teshima, Yutaka Setomoto, and Toru Den  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3339-3346 (2011)
http://dx.doi.org/10.1364/OE.19.003339


View Full Text Article

Enhanced HTML    Acrobat PDF (1306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a single shot two-dimensional grating-based X-ray phase-contrast imaging using a synchrotron radiation source. A checkerboard designed phase grating for π phase modulation at 17 keV and 35 keV, and a lattice-shaped amplitude grating with a high aspect ratio to shield X-rays up to 35 keV were fabricated. A Fourier analysis of Moiré fringe generated by the gratings was introduced to obtain the two-dimensional differential phase-contrast image with a single exposure. The results show that soft tissues and cartilages of a chicken wing sample are clearly seen with differential phase variation in two-dimensional directions. Using this method not only the whole of an object but also only an inner part of the object can be imaged.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(100.5070) Image processing : Phase retrieval
(340.7440) X-ray optics : X-ray imaging
(340.7450) X-ray optics : X-ray interferometry

ToC Category:
X-ray Optics

History
Original Manuscript: December 10, 2010
Revised Manuscript: January 23, 2011
Manuscript Accepted: January 28, 2011
Published: February 4, 2011

Citation
Hidenosuke Itoh, Kentaro Nagai, Genta Sato, Kimiaki Yamaguchi, Takashi Nakamura, Takeshi Kondoh, Chidane Ouchi, Takayuki Teshima, Yutaka Setomoto, and Toru Den, "Two-dimensional grating-based X-ray phase-contrast imaging using Fourier transform phase retrieval," Opt. Express 19, 3339-3346 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6(8), 155–156 (1965). [CrossRef]
  2. V. N. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D Appl. Phys. 28(11), 2314–2317 (1995). [CrossRef]
  3. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373(6515), 595–598 (1995). [CrossRef]
  4. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  5. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995). [CrossRef]
  6. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996). [CrossRef]
  7. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401–407 (1836).
  8. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]
  9. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys. 45(No. 6A), 5254–5262 (2006). [CrossRef]
  10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  11. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006). [CrossRef]
  12. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008). [CrossRef] [PubMed]
  13. A. Momose, W. Yashiro, H. Maikusa, and Y. Takeda, “High-speed X-ray phase imaging and X-ray phase tomography with Talbot interferometer and white synchrotron radiation,” Opt. Express 17(15), 12540–12545 (2009). [CrossRef] [PubMed]
  14. C. Kottler, C. David, F. Pfeiffer, and O. Bunk, “A two-directional approach for grating based differential phase contrast imaging using hard X-rays,” Opt. Express 15(3), 1175–1181 (2007). [CrossRef] [PubMed]
  15. H. H. Wen, E. E. Bennett, R. Kopace, A. F. Stein, and V. Pai, “Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings,” Opt. Lett. 35(12), 1932–1934 (2010). [CrossRef] [PubMed]
  16. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computed-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited