OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3553–3561

Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique

Takuya D. Kawahara, Tsukasa Kitahara, Fumitoshi Kobayashi, Yasunori Saito, and Akio Nomura  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3553-3561 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a sodium (Na) temperature lidar based on two injection seeded Nd:YAG pulse lasers using single-pass sum-frequency generation. The laser power at 589 nm is 400 mW (40 mJ per pulse at a repetition rate of 10 Hz) and the pulse width is 22 nsec FWHM. The narrowband laser tuned to the Doppler broadened Na D2 spectrum enables us to measure the temperature of the mesopause region (80-115 km). This solid-state transportable system demonstrated high performance and capability at Syowa Station in Antarctica for 3 years and at Uji in Japan for an additional year without any major operational troubles.

© 2011 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(280.3640) Remote sensing and sensors : Lidar
(280.6780) Remote sensing and sensors : Temperature
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Remote Sensing

Original Manuscript: November 16, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 30, 2011
Published: February 9, 2011

Takuya D. Kawahara, Tsukasa Kitahara, Fumitoshi Kobayashi, Yasunori Saito, and Akio Nomura, "Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique," Opt. Express 19, 3553-3561 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21(17), 1771–1774 (1994). [CrossRef]
  2. U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23(2), 141–144 (1996). [CrossRef]
  3. J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atmos. Sol. Terr. Phys. 65(16-18), 1411–1424 (2003). [CrossRef]
  4. X. Chu, W. Pan, G. C. Papen, C. S. Gardner, and J. A. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and initial results at the north and south poles,” Appl. Opt. 41(21), 4400–4410 (2002). [CrossRef] [PubMed]
  5. C. S. Gardner, “Performance Capabilities of Middle-Atmosphere Temperature Lidars: Comparison of Na, Fe, K, Ca, Ca+, and Rayleigh Systems,” Appl. Opt. 43(25), 4941–4956 (2004). [CrossRef] [PubMed]
  6. T. H. Jeys, A. A. Brailove, and A. Mooradian, “Sum frequency generation of sodium resonance radiation,” Appl. Opt. 28(13), 2588–2591 (1989). [CrossRef] [PubMed]
  7. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009). [CrossRef] [PubMed]
  8. N. Saito, K. Akagawa, M. Ito, A. Takazawa, Y. Hayano, Y. Saito, M. Ito, H. Takami, M. Iye, and S. Wada, “Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers,” Opt. Lett. 32(14), 1965–1967 (2007). [CrossRef] [PubMed]
  9. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, ““Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69°S, 39°E),” Antarctica,” Geophys. Res. Lett. 29(15), 1709 (2002), doi:. [CrossRef]
  10. M. K. Ejiri, T. Nakamura, and T. D. Kawahara, “Seasonal variation of nocturnal temperature and sodium density in the mesopause region observed by a resonance scatter lidar over Uji, Japan,” J. Geophys. Res. 115(D18), D18126 (2010), doi:. [CrossRef]
  11. R. E. Bills, C. S. Gardner, and C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30(1), 13–21 (1991). [CrossRef]
  12. G. B. Burns, T. D. Kawahara, W. J. R. French, A. Nomura, and A. R. Klekociuk, “A comparison of hydroxyl rotational temperatures from Davis (69°S, 78°E) with sodium lidar temperatures from Syowa (69°S, 39°E),” Geophys. Res. Lett. 30(1), 1025 (2003), doi:. [CrossRef]
  13. T. D. Kawahara, C. S. Garnder, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109(D12), D12103 (2004), doi:. [CrossRef]
  14. S. E. Palo, J. M. Forbes, X. Zhang, J. M. Russell, C. J. Mertens, M. G. Mlynczak, G. B. Burns, P. J. Espy, and T. D. Kawahara, “Planetary wave coupling from the stratosphere to the thermosphere during the 2002 Southern Hemisphere pre-stratwarm period,” Geophys. Res. Lett. 32(23), L23809 (2005), doi:. [CrossRef]
  15. C.-Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007). [CrossRef]
  16. J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34(7), 1093–1095 (2009). [CrossRef] [PubMed]
  17. C.-Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application,” Appl. Opt. 34(6), 1063–1075 (1995). [CrossRef] [PubMed]
  18. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18(12), 1019–1021 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited