OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3592–3598

An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics

Mikael Antelius, Kristinn B. Gylfason, and Hans Sohlström  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3592-3598 (2011)
http://dx.doi.org/10.1364/OE.19.003592


View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and characterization of a grating for coupling between a single mode silica fiber and the TE mode in a silicon photonic waveguide on a silicon on insulator (SOI) substrate. The grating is etched completely through the silicon device layer, thus permitting the fabrication of through-etched surface coupled silicon nanophotonic circuits in a single lithography step. Furthermore, the grating is apodized to match the diffracted wave to the mode profile of the fiber. We experimentally demonstrate a coupling efficiency of 35% with a 1 dB bandwidth of 47 nm at 1536 nm on a standard SOI substrate. Furthermore, we show by simulation that with an optimized buried oxide thickness, a coupling efficiency of 72% and a 1 dB bandwidth of 38 nm at 1550 nm is achievable. This is, to our knowledge, the highest simulated coupling efficiency for single-etch TE-mode grating couplers. In particular, simulations show that apodizing a conventional periodic through-etched grating decreases the back-reflection into the waveguide from 21% to 0.1%.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 10, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 20, 2011
Published: February 9, 2011

Citation
Mikael Antelius, Kristinn B. Gylfason, and Hans Sohlström, "An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics," Opt. Express 19, 3592-3598 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006). [CrossRef]
  2. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010). [CrossRef]
  3. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly Efficient Grating Coupler between Optical Fiber and Silicon Photonic Circuit,” in “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), OSA Technical Digest, CTuC6.
  4. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004). [CrossRef] [PubMed]
  5. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35, 1290–1292 (2010). [CrossRef] [PubMed]
  6. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35, 3243–3245 (2010). [CrossRef] [PubMed]
  7. F. van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, “Compact grating couplers between optical fibers and Silicon-on-Insulator photonic wire waveguides with 69% coupling efficiency,” in Optical Fiber Communication Conference, (2006), pp. 1–3. [CrossRef]
  8. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006). [CrossRef] [PubMed]
  9. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express 15, 9625–9630 (2007). [CrossRef] [PubMed]
  10. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008). [CrossRef]
  11. X. Chen, C. Li, and H. K. Tsang, “Characterization of silicon-on-insulator waveguide chirped grating for coupling to a vertical optical fiber,” in “IEEE/LEOS International Conference on Optical MEMS and Nanophotonics,” (2008), pp. 56–57. [CrossRef]
  12. J. Bolten, J. Hofrichter, N. Moll, S. Schönenberger, F. Horst, B. J. Offrein, T. Wahlbrink, T. Mollenhauer, and H. Kurz, “CMOS compatible cost-efficient fabrication of SOI grating couplers,” Microelectron. Eng. 86, 1114–1116 (2009). [CrossRef]
  13. B. Schmid, A. Petrov, and M. Eich, “Optimized grating coupler with fully etched slots,” Opt. Express 17, 11066–11076 (2009). [PubMed]
  14. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited