OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3715–3729

Control of quantum transverse correlations on a four-photon system

P.-L. de Assis, M. A. D. Carvalho, L. P. Berruezo, J. Ferraz, I. F. Santos, F. Sciarrino, and S. Pádua  »View Author Affiliations

Optics Express, Vol. 19, Issue 4, pp. 3715-3729 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Control of spatial quantum correlations in bi-photons is one of the fundamental principles of Quantum Imaging. Up to now, experiments have been restricted to controlling the state of a single bi-photon, by using linear optical elements. In this work we demonstrate experimental control of quantum correlations in a four-photon state comprised of two pairs of photons. Our scheme is based on a high-efficiency parametric down-conversion source coupled to a double slit by a variable linear optical setup, in order to obtain spatially encoded qubits. Both entangled and separable pairs have been obtained, by altering experimental parameters. We show how the correlations influence both the interference and diffraction on the double slit.

© 2011 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.4180) Quantum optics : Multiphoton processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 29, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 31, 2010
Published: February 11, 2011

P.-L. de Assis, M. A. D. Carvalho, L. P. Berruezo, J. Ferraz, I. F. Santos, F. Sciarrino, and S. Pádua, "Control of quantum transverse correlations on a four-photon system," Opt. Express 19, 3715-3729 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Jaeger, M. Horne, and A. Shimony, “Complementarity of one-particle and two-particle interference,” Phys. Rev. A 48, 1023–1027 (1993). [CrossRef] [PubMed]
  2. M. A. Horne, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989). [CrossRef] [PubMed]
  3. P. H. Souto Ribeiro, S. Pádua, J. C. M. da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A 49, 4176–4179 (1994). [CrossRef]
  4. T. Pittman, D. Strekalov, D. Klyshko, M. Rubin, A. Sergienko, and Y. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996). [CrossRef] [PubMed]
  5. A. Abouraddy, B. Saleh, A. Sergienko, and M. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001). [CrossRef] [PubMed]
  6. B. Saleh, A. Abouraddy, A. Sergienko, and M. Teich, “Duality between partial coherence and partial entanglement,” Phys. Rev. A 62, 043816 (2000). [CrossRef]
  7. I. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A 72, 033802 (2005). [CrossRef]
  8. G. Brida, L. Caspani, A. Gatti, M. Genovese, A. Meda, and I. R. Berchera, “Measurement of Sub-Shot-Noise Spatial Correlations without Background Subtraction,” Phys. Rev. Lett. 102, 213602 (2009). [CrossRef] [PubMed]
  9. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010). [CrossRef]
  10. S. P. Walborn, M. O. Terra Cunha, S. Pádua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65, 033818 (2002). [CrossRef]
  11. E. J. S. Fonseca, C. H. Monken, and S. Pádua, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999). [CrossRef]
  12. E. J. S. Fonseca, Z. Paulini, P. Nussenzveig, C. H. Monken, and S. Pádua, “Nonlocal de Broglie wavelength of a two-particle system,” Phys. Rev. A 63, 043819 (2001). [CrossRef]
  13. G. Lima, L. Neves, I. Santos, J. A. Gómez, C. Saavedra, and S. Pádua, “Propagation of spatially entangled qudits through free space,” Phys. Rev. A 73, 032340 (2006). [CrossRef]
  14. L. Neves, S. Pádua, and C. Saavedra, “Controlled generation of maximally entangled qudits using twin photons,” Phys. Rev. A 69, 042305 (2004). [CrossRef]
  15. L. Neves, G. Lima, J. A. Gómez, C. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005). [CrossRef] [PubMed]
  16. L. Neves, G. Lima, E. Fonseca, L. Davidovich, and S. Pádua, “Characterizing entanglement in qubits created with spatially correlated twin photons,” Phys. Rev. A 76, 032314 (2007). [CrossRef]
  17. G. Taguchi, T. Dougakiuchi, N. Yoshimoto, K. Kasai, M. Iinuma, H. F. Hofmann, and Y. Kadoya, “Measurement and control of spatial qubits generated by passing photons through double slits,” Phys. Rev. A 78, 012307 (2008). [CrossRef]
  18. W. Peeters, and J. Renema, “andM. V. Exter, “Engineering of two-photon spatial quantum correlations behind a double slit,” Phys. Rev. A 79, 043817 (2009). [CrossRef]
  19. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. (1962). [CrossRef]
  20. . F. Wong, M. A. Albota, F. Koenig, C. E. Kuklewicz, E. J. Mason, G. Messin, and J. H. Shapiro, “High-flux entanglement sources using periodically-poled nonlinear crystals,” Nonlinear Optics: Materials, Fundamentals and Applications (2002), paper FC8 (1).
  21. C. Kuklewicz, M. Fiorentino, G. Messin, F. Wong, and J. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 13807 (2004). [CrossRef]
  22. Z.-Y. J. Ou, Multi-Photon Quantum Interference (Springer, 2007), 1st ed.
  23. W. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  24. C. Monken, P. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57, 3123–3126 (1998). [CrossRef]
  25. O. Cosme, A. Delgado, G. Lima, C. H. Monken, and S. Pádua, “Controlling the transverse correlation in QPM parametric down-conversion,” arXiv:0906.4734v1 [quant-ph].
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004), 3rd ed.
  27. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  28. A. Abouraddy, M. Nasr, B. Saleh, A. Sergienko, and M. Teich, “Demonstration of the complementarity of oneand two-photon interference,” Phys. Rev. A 63, 063803 (2001). [CrossRef]
  29. M. Ostermeyer, D. Puhlmann, and D. Korn, “Quantum diffraction of biphotons at a blazed grating,” J. Opt. Soc. Am. B 26, 2347–2356 (2009). [CrossRef]
  30. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002). [CrossRef] [PubMed]
  31. R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004). [CrossRef]
  32. T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104, 060401 (2010). [CrossRef] [PubMed]
  33. A. Cabello, and M. Terra Cunha, “Proposal of a two-qutrit contextuality test free of the finite precision and compatibility loopholes,” arXiv:1009.2330v1 [quant-ph] (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited