OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 4 — Feb. 14, 2011
  • pp: 3818–3824

Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering

Min Yan, Lars Thylén, and Min Qiu  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3818-3824 (2011)
http://dx.doi.org/10.1364/OE.19.003818


View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a layered metal-dielectric waveguide, whose fundamental mode has an effective index as high as 7.35 at 1.55μm, enabling subwavelength spatial confinement. The loss is found to be reasonable in relation to the confinement. The indefinite dielectric tensor of the stratified metamaterial core generally leads to multimode operation of the waveguide, exhibiting a “reversed” mode ordering contrary to conventional waveguides. The waveguide features a strong leveraging in modal index change subject to a change of index in the dielectric layers, opening the design possibilities of very compact active electro-optic devices.

© 2011 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 13, 2011
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 4, 2011
Published: February 11, 2011

Citation
Min Yan, Lars Thylén, and Min Qiu, "Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering," Opt. Express 19, 3818-3824 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali, and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  2. L. Thylén, S. He, L. Wosinski, and D. Dai, "The Moore’s law for photonic integrated circuits," J. Zhejiang Univ. Sci. 7, 1961-1967 (2006). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. K. Tanaka, and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  5. G. Veronis, and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007). [CrossRef]
  6. B. T. Schwartz, and R. Piestun, "Waveguiding in air by total external reflection from ultralow index metamaterials," Appl. Phys. Lett. 85, 1-3 (2004). [CrossRef]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  8. M. Yan, and N. A. Mortensen, "Hollow-core infrared fiber incorporating metal-wire metamaterial," Opt. Express 17, 14851-14864 (2009). [CrossRef] [PubMed]
  9. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomater. 2007, 79469 (2007). [CrossRef]
  10. C. H. Gan, and P. Lalanne, "Well-confined surface plasmon polaritons for sensing applications in the near infrared," Opt. Lett. 35, 610-612 (2010). [CrossRef] [PubMed]
  11. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  12. Z. L. Sámson, S.-C. Yen, K. F. MacDonald, K. Knight, S. Li, D. W. Hewak, D.-P. Tsai, and N. I. Zheludev, "Chalcogenide glasses in active plasmonics," Phys. Status Solidi (RRL) 4, 274-276 (2010). [CrossRef]
  13. This picture is only absolutely valid when the waveguide under consideration is infinitely extending along x, or of slab geometry. When the waveguide width is finite, the guided mode is always hybrid with both TM and transverse-electric (TE) field components. A plasmonic mode usually has a larger portion of TM components and is therefore a TM-like mode.
  14. Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, and H. Tsuda, "Small-sized optical gate switch using ge2sb2te5 phase-change material integrated with silicon waveguide," Electron. Lett. 46, 368-369 (2010). [CrossRef]
  15. A tensor is indefinite if its three principle tensor components are not of the same sign. A medium with such a permittivity and/or permeability tensor(s) is referred to as an indefinite medium [16].
  16. D. R. Smith, and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited