OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3862–3869

Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object

Feng Pan, Wen Xiao, Shuo Liu, FanJing Wang, Lu Rong, and Rui Li  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3862-3869 (2011)
http://dx.doi.org/10.1364/OE.19.003862


View Full Text Article

Enhanced HTML    Acrobat PDF (1256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to reduce coherent noise in digital holographic phase contrast microscopy is proposed. By slightly shifting the specimen, a series of digital holograms with different coherent noise patterns is recorded. Each hologram is reconstructed individually, while the different phase tilts of the reconstructed complex amplitudes due to the specimen shifts are corrected in the hologram plane by using numerical parametric lens method. Afterward, the lateral displacements of the phase maps from different holograms are compensated in the image plane by using digital image registration method. Thus, all phase images have same distribution, but uncorrelated coherent noise patterns. By a proper averaging procedure, the coherent noise of phase contrast image is reduced significantly. The experimental results are given to confirm the proposed method.

© 2011 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(100.3010) Image processing : Image reconstruction techniques
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: November 16, 2010
Revised Manuscript: January 4, 2011
Manuscript Accepted: February 3, 2011
Published: February 14, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Feng Pan, Wen Xiao, Shuo Liu, FanJing Wang, Lu Rong, and Rui Li, "Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object," Opt. Express 19, 3862-3869 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  2. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). [CrossRef] [PubMed]
  3. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-4-2487 . [CrossRef] [PubMed]
  4. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9361 . [CrossRef] [PubMed]
  5. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006). [CrossRef] [PubMed]
  6. J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005). [CrossRef]
  7. X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010). [CrossRef]
  8. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24(6), 1617–1622 (2007). [CrossRef]
  9. A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008). [CrossRef]
  10. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008). [CrossRef] [PubMed]
  11. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007). [CrossRef]
  12. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008). [CrossRef]
  13. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010). [CrossRef]
  14. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17(7), 5473–5480 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-7-5473 . [CrossRef] [PubMed]
  15. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, and K. Badizadegan,andM. S. Feld, , “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009), http://www.opticsexpress.org /abstract.cfm?URI=OPEX-17-15-12285 . [CrossRef] [PubMed]
  16. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002). [CrossRef] [PubMed]
  17. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008). [CrossRef]
  18. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006). [CrossRef] [PubMed]
  19. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004). [CrossRef] [PubMed]
  20. P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010). [CrossRef]
  21. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009). [CrossRef] [PubMed]
  22. T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1-3), 188–201 (2005). [CrossRef]
  23. T. Kreis, “Digital Recording and Numerical Reconstruction of Wave Fields,” in Handbook of Holographic Interferometry, T. Kreis, ed. (Wiley-VCH Verlag, 2005), pp. 115–120.
  24. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006). [CrossRef] [PubMed]
  25. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited