OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3908–3918

Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals

Fuchyi Yang and Brian T. Cunningham  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3908-3918 (2011)
http://dx.doi.org/10.1364/OE.19.003908


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Asymmetric 2D photonic crystals were fabricated using polymer embedded PbS quantum dots on plastic substrates for enhancing optical down conversion efficiency from blue to near infrared wavelengths through enhanced extraction and excitation effects. We demonstrate 8x improvement of QD emission at normal incidence extraction from enhanced extraction and 2.5x improvement in power conversion efficiency from enhanced excitation.

© 2011 OSA

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 3, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 9, 2011
Published: February 14, 2011

Citation
Fuchyi Yang and Brian T. Cunningham, "Enhanced quantum dot optical down-conversion using asymmetric 2D photonic crystals," Opt. Express 19, 3908-3918 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Graham-Rowe, “From dots to devices,” Nat. Photonics 3(6), 307–309 (2009). [CrossRef]
  2. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, “Colloidal quantum-dot photodetectors exploiting multiexciton generation,” Science 324(5934), 1542–1544 (2009). [CrossRef] [PubMed]
  3. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005). [CrossRef] [PubMed]
  4. V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, “Quantum dot solar cells,” J. Appl. Phys. 89(4), 2268–2271 (2001). [CrossRef]
  5. S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the performance of colloidal quantum-dot-sensitized solar cells,” Nanotechnology 20(29), 295204 (2009). [CrossRef] [PubMed]
  6. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9(7), 2532–2536 (2009). [CrossRef] [PubMed]
  7. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  8. V. Wood, M. J. Panzer, J. L. Chen, M. S. Bradley, J. E. Halpert, M. C. Bawendi, and V. Bulovic, “Inkjet-Printed Quantum Dot-Polymer Composites for Full-Color AC-Driven Displays,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2151–2155 (2009). [CrossRef]
  9. K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009). [CrossRef]
  10. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  11. M. Barth, A. Gruber, and F. Cichos, “Spectral and angular redistribution of photoluminescence near a photonic stop band,” Phys. Rev. B 72(8), 085129 (2005). [CrossRef]
  12. F. S. Diana, A. David, I. Meinel, R. Sharma, C. Weisbuch, S. Nakamura, and P. M. Petroff, “Photonic crystal-assisted light extraction from a colloidal quantum dot/GaN hybrid structure,” Nano Lett. 6(6), 1116–1120 (2006). [CrossRef] [PubMed]
  13. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008). [CrossRef] [PubMed]
  14. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]
  15. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94(23), 231122 (2009). [CrossRef]
  16. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007). [CrossRef]
  17. F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express 18(11), 11846–11858 (2010). [CrossRef] [PubMed]
  18. www.srubiosystems.com .
  19. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006). [CrossRef]
  20. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006). [CrossRef]
  21. J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys. 8(33), 3851–3856 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited