OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 3925–3936

Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area

Wen-Di Li, Fei Ding, Jonathan Hu, and Stephen Y. Chou  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 3925-3936 (2011)
http://dx.doi.org/10.1364/OE.19.003925


View Full Text Article

Acrobat PDF (1248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a new SERS substrate architecture that couples a dense three-dimensional (3-D) cavity nanoantenna array, through nano-gaps, with dense plasmonic nanodots; and a new nanofabrication that combines nanoimprint, guided self-assembly and self-alignment and has fabricated the architecture precisely, simply, inexpensively and over large area (4-inch wafer). We experimentally achieved not only high area-average SERS enhancement (1.2 × 109) but also excellent uniformity (22.4% variation) at the same time over the entire large-area sample by measuring 90 points with a regular mapping distance. The best uniformity achieved is 15% variation over 1.6 mm by 1.6 mm area at slightly lower enhancement factor and is independent of the excitation laser probe size, which had an area varying from ~1 to 10,000 μm2.

© 2011 OSA

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 4, 2011
Manuscript Accepted: February 9, 2011
Published: February 14, 2011

Citation
Wen-Di Li, Fei Ding, Jonathan Hu, and Stephen Y. Chou, "Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area," Opt. Express 19, 3925-3936 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-3925


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. 1.heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977). [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977). [CrossRef]
  4. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  6. N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surfaced-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 946–954 (2008). [CrossRef] [PubMed]
  7. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010). [CrossRef] [PubMed]
  8. H. Y. H. Chan, C. C. Takoudis, and M. J. Weaver, “High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies,” J. Catal. 172(2), 336–345 (1997). [CrossRef]
  9. S. C. S. Lai and M. T. M. Koper, “Ethanol electro-oxidation on platinum in alkaline media,” Phys. Chem. Chem. Phys. 11(44), 10446–10456 (2009). [CrossRef] [PubMed]
  10. Z. Q. Tian and B. Ren, “Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy,” Annu. Rev. Phys. Chem. 55(1), 197–229 (2004). [CrossRef] [PubMed]
  11. X. M. Zhao, B. H. Zhang, K. L. Ai, G. Zhang, L. Y. Cao, X. J. Liu, H. M. Sun, H. S. Wang, and L. H. Lu, “Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy,” J. Mater. Chem. 19(31), 5547–5553 (2009). [CrossRef]
  12. J. D. Driskell, S. Shanmukh, Y. J. Liu, S. Hennigan, L. Jones, Y. P. Zhao, R. A. Dluhy, D. C. Krause, and R. A. Tripp, “Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition,” IEEE Sens. J. 8(6), 863–870 (2008). [CrossRef]
  13. I. S. Patel, W. R. Premasiri, D. T. Moir, and L. D. Ziegler, “Barcoding bacterial cells: A SERS based methodology for pathogen identification,” J Raman Spectrosc 39(11), 1660–1672 (2008). [CrossRef] [PubMed]
  14. R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008). [CrossRef]
  15. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  16. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006). [CrossRef] [PubMed]
  17. T. Xiao, Q. Ye, and L. Sun, “Hunting for the active sites of surface-enhanced Raman scattering: A new strategy based on single silver particles,” J. Phys. Chem. B 101(4), 632–638 (1997). [CrossRef]
  18. Y. Fang, N. H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008). [CrossRef] [PubMed]
  19. M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980). [CrossRef] [PubMed]
  20. S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, “Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering,” J. Phys. Chem. B 110(27), 13436–13444 (2006). [CrossRef] [PubMed]
  21. G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, “Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films,” J. Am. Chem. Soc. 129(20), 6378–6379 (2007). [CrossRef] [PubMed]
  22. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003). [CrossRef]
  23. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  24. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett. 92(21), 213106 (2008). [CrossRef]
  25. X. Y. Zhang, C. R. Yonzon, and R. P. Van Duyne, “Nanosphere lithography fabricated plasmonic materials and their applications,” J. Mater. Res. 21(5), 1083–1092 (2006). [CrossRef]
  26. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  27. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007). [CrossRef] [PubMed]
  28. areN. Perney, F. García de Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007). [CrossRef]
  29. W. D. Li, and S. Y. Chou, unpublished, 2008.
  30. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995). [CrossRef]
  31. W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998). [CrossRef]
  32. M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26), 5299–5301 (2004). [CrossRef]
  33. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  34. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(2), 344–353 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited