OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4002–4008

Active compensation of large dispersion of femtosecond pulses for precision laser ranging

Sang-Hyun Lee, Joohyung Lee, Young-Jin Kim, Keunwoo Lee, and Seung-Woo Kim  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4002-4008 (2011)
http://dx.doi.org/10.1364/OE.19.004002


View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an active way of compensation for large dispersion induced in the femtosecond light pulses travelling in air for laser ranging. The pulse duration is consistently regulated at 250 fs by dispersion control, allowing sub-micrometer resolution in measuring long distances by means of time-of-flight measurement. This method could facilitate more reliable applications of femtosecond pulses for satellite laser ranging, laser altimetry and active LIDAR applications.

© 2011 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(280.3400) Remote sensing and sensors : Laser range finder
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Remote Sensing

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 11, 2011
Published: February 15, 2011

Citation
Sang-Hyun Lee, Joohyung Lee, Young-Jin Kim, Keunwoo Lee, and Seung-Woo Kim, "Active compensation of large dispersion of femtosecond pulses for precision laser ranging," Opt. Express 19, 4002-4008 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985). [CrossRef]
  2. J. J. Degnan, “Millimeter accuracy satellite laser ranging: a review,” In: Smith, D.E., Turcotte, D.L. (Eds.), Contributions of Space Geodynamics: Technology. AGU Geodynamics Series25, 133–162 (1993).
  3. J. J. Degnan, “Photon-counting micro laser rangers, transponders, and altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001). [CrossRef]
  4. J. J. Degnan, “Photon-counting multi-kilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002). [CrossRef]
  5. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000). [CrossRef]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  7. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  8. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009). [CrossRef]
  9. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef]
  10. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004). [CrossRef] [PubMed]
  11. M. Cui, R. N. Schouten, N. Bhattacharya, and S. A. van den Berg, “Experimental demonstration of distance measurement with a femtosecond frequency comb laser,” J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008). [CrossRef]
  12. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006). [CrossRef] [PubMed]
  13. K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008). [CrossRef] [PubMed]
  14. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  15. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
  16. J. Kasparian, M. Rodriguez, and G. Méjea, “White-Light Filaments for Atmospheric Analysis,” Science 301(5629), 61–64 (2003). [CrossRef] [PubMed]
  17. J. W. Marini, and C. W. Murrey, “Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations above 10 Degrees,” Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Rep. X-591–73–351(1973).
  18. J. B. Abshire and C. S. Gardner, “Atmospheric refractivity corrections in satellite laser ranging,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985). [CrossRef]
  19. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996). [CrossRef] [PubMed]
  20. P. E. Ciddor, R. J. Hill, and Group Index, “Refractive Index or Air. 2,” Appl. Opt. 38(9), 1663–1667 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited