OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4076–4084

GaAs-based surface-normal optical modulator compared to Si and its wavelength response characterization using a supercontinuum laser

Ojas P. Kulkarni, Mohammed N. Islam, and Fred L. Terry, Jr.  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4076-4084 (2011)
http://dx.doi.org/10.1364/OE.19.004076


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A GaAs-based surface-normal optical modulator using the free-carrier effect is demonstrated for the first time to our knowledge. The device exhibits ~43% modulation depth compared to 24% for a previously demonstrated Si-based device with twice the interaction length. Simulations predict ~1.8 times the speeds for GaAs-based devices compared to Si. Operation in conjunction with a supercontinuum source is used to characterize the wavelength response of the modulator. Potential for colorless operation makes the modulator a candidate for wavelength-division multiplexed networks with broadband light sources.

© 2011 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: September 24, 2010
Revised Manuscript: February 5, 2011
Manuscript Accepted: February 8, 2011
Published: February 16, 2011

Citation
Ojas P. Kulkarni, Mohammed N. Islam, and Fred L. Terry, "GaAs-based surface-normal optical modulator compared to Si and its wavelength response characterization using a supercontinuum laser," Opt. Express 19, 4076-4084 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Solgaard, A. A. Godil, B. R. Hemenway, and D. M. Bloom, “All-silicon integrated optical modulator,” IEEE J. Sel. Areas Comm. 9(5), 704–710 (1991). [CrossRef]
  2. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40(7), 1348–1356 (2001). [CrossRef]
  3. B. Noharet, Q. Wang, S. Junique, D. Ågren, and S. Almqvist, ““Multiple quantum well spatial light modulators for optical signal processing,” Integrated Optical Devices, Nanostructures, and Displays,” Proc. SPIE 5618, 146–155 (2004). [CrossRef]
  4. H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40(7), 1186–1191 (2001). [CrossRef]
  5. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22(10), 718–720 (1997). [CrossRef] [PubMed]
  6. B. C. Collings, M. L. Mitchell, L. Boivin, and W. H. Knox, “A 1021 channel WDM system,” IEEE Photon. Technol. Lett. 12(7), 906–908 (2000). [CrossRef]
  7. A. Arnulf, J. Bricard, E. Curé, and C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am. 47(6), 491–497 (1957), http://www.opticsinfobase.org/abstract.cfm?URI=josa-47-6-491 . [CrossRef]
  8. T. H. Stievater, D. Park, M. W. Pruessner, W. S. Rabinovich, S. Kanakaraju, and C. J. K. Richardson, “A microelectromechanically tunable asymmetric Fabry-Perot quantum well modulator at 1.55 microm,” Opt. Express 16(21), 16766–16773 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16766 . [CrossRef] [PubMed]
  9. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulators operating near 1550 nm with a high-extinction ratio at high temperatures,” IEEE Photon. Technol. Lett. 18(1), 214–216 (2006). [CrossRef]
  10. B. R. Hemenway, “Integrated silicon light modulator for fiber-optic interconnects at 1.3 micron wavelength,” Stanford University dissertation, Ginzton Lab. Report #4703, May 1990.
  11. R. E. Williams, Gallium arsenide processing techniques, (Artech House, Inc., 1984).
  12. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007). [CrossRef]
  13. W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,” Phys. Rev. 114(1), 59–63 (1959). [CrossRef]
  14. S. L. Chuang, Physics of optoelectronic devices, (Wiley-Interscience Publication, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited