OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4182–4187

Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot

V. B. Verma, Martin J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4182-4187 (2011)
http://dx.doi.org/10.1364/OE.19.004182


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate photon antibunching from a single lithographically defined quantum dot fabricated by electron beam lithography, wet chemical etching, and overgrowth of the barrier layers by metalorganic chemical vapor deposition. Measurement of the second-order autocorrelation function indicates g(2)(0) = 0.395 ± 0.030, below the 0.5 limit necessary for classification as a single photon source.

© 2011 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

History
Original Manuscript: October 29, 2010
Revised Manuscript: December 29, 2010
Manuscript Accepted: January 16, 2011
Published: February 17, 2011

Citation
V. B. Verma, Martin J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin, "Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot," Opt. Express 19, 4182-4187 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4182


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  2. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Secure communication: quantum cryptography with a photon turnstile,” Nature 420(6917), 762 (2002). [CrossRef] [PubMed]
  3. A. Imamoğlu, “Are quantum dots useful for quantum computation?” Physica E 16(1), 47–50 (2003). [CrossRef]
  4. A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004). [CrossRef]
  5. R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260 (2004). [CrossRef]
  6. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004). [CrossRef]
  7. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  8. X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004). [CrossRef]
  9. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000). [CrossRef] [PubMed]
  10. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000). [CrossRef] [PubMed]
  11. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  13. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005). [CrossRef] [PubMed]
  14. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008). [CrossRef]
  15. C. Schneider, A. Huggenberger, T. Sünner, T. Heindel, M. Strauß, S. Göpfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Höfling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration,” Nanotechnology 20(43), 434012 (2009). [CrossRef] [PubMed]
  16. P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site-Control of InAs Quantum Dots using Ex-Situ Electron-Beam Lithographic Patterning of GaAs Substrates,” Jpn. J. Appl. Phys. 45(No. 4A), 2519–2521 (2006). [CrossRef]
  17. H. Z. Song, T. Usuki, T. Ohshima, Y. Sakuma, M. Kawabe, Y. Okada, K. Takemoto, T. Miyazawa, S. Hirose, Y. Nakata, M. Takatsu, and N. Yokoyama, “Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique,” Nanoscale Res. Lett. 1(2), 160–166 (2006). [CrossRef]
  18. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010). [CrossRef]
  19. V. B. Verma and J. J. Coleman, “High density patterned quantum dot arrays fabricated by electron beam lithography and wet chemical etching,” Appl. Phys. Lett. 93(11), 111117 (2008). [CrossRef]
  20. V. B. Verma, U. Reddy, N. L. Dias, K. P. Bassett, X. Li, and J. J. Coleman, “Patterned Quantum Dot Molecule Laser Fabricated by Electron Beam Lithography and Wet Chemical Etching,” IEEE J. Quantum Electron. (to be published).
  21. K. Leosson, J. R. Jensen, J. M. Hvam, and W. Langbein, “Linewidth Statistics of Single InGaAs Quantum Dot Photoluminescence Lines,” Phys. Status Solidi B 221(1), 49–53 (2000). [CrossRef]
  22. J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. Leonardi, and D. Hommel, “Spectral diffusion of the exciton transition in a single self-organized quantum dot,” Appl. Phys. Lett. 76(14), 1872 (2000). [CrossRef]
  23. R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited