OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4528–4535

Variable-focus terahertz lens

Benedikt Scherger, Christian Jördens, and Martin Koch  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4528-4535 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a variable focus lens for the THz range. The focal length can be changed by pumping a medical white oil in and out of the lens body. Due to the optical transparency of the liquid and a similar refractive index in the visible frequency range, the THz beam path can be aligned using conventional optical light sources. This type of lens might find applications in terahertz based quality control, stand-off detection and wireless communication systems.

© 2011 OSA

OCIS Codes
(220.3620) Optical design and fabrication : Lens system design
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Optical Design and Fabrication

Original Manuscript: January 14, 2011
Revised Manuscript: February 11, 2011
Manuscript Accepted: February 16, 2011
Published: February 23, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Benedikt Scherger, Christian Jördens, and Martin Koch, "Variable-focus terahertz lens," Opt. Express 19, 4528-4535 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  3. D. Zimdars, J. White, G. Stuk, A. Chernovsky, G. Fichter, and S. Williamson, “Large area terahertz imaging and non-destructive evaluation applications,” Insight-Non-Destruct. Test. Condition Monitor. 48(9), 537–539 (2006). [CrossRef]
  4. C. Otani, Y. Sasaki, H. Hoshina, M. Yamashita, G. Okazaki, K. Kawase, and S. Riken-Sendai, “Development of a prototype apparatus for inspecting illicit drugs inside envelopes,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, IRMMW-THz 2006, (2006), p. 173.
  5. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [CrossRef] [PubMed]
  6. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008). [CrossRef]
  7. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009). [CrossRef]
  8. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation,” Opt. Express 16(12), 9060–9066 (2008). [CrossRef] [PubMed]
  9. P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–364 (2004). [CrossRef] [PubMed]
  10. C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008). [CrossRef]
  11. A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006). [CrossRef]
  12. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys., A Mater. Sci. Process. 74(2), 291–293 (2002). [CrossRef]
  13. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281(9), 2374–2379 (2008). [CrossRef]
  14. C. Jansen, S. Wietzke, V. Astley, D. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010). [CrossRef]
  15. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009). [CrossRef] [PubMed]
  16. S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34(19), 2921–2923 (2009). [CrossRef] [PubMed]
  17. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  18. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  19. M. Theuer, R. Beigang, and D. Grischkowsky, “Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor,” Appl. Phys. Lett. 97(7), 071106 (2010). [CrossRef]
  20. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: polymer tube,” Opt. Express 18(4), 3762–3767 (2010). [CrossRef] [PubMed]
  21. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002). [CrossRef]
  22. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007). [CrossRef]
  23. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  24. S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009). [CrossRef] [PubMed]
  25. C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).
  26. R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36(13), 1156–1158 (2000). [CrossRef]
  27. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004). [CrossRef]
  28. H. Chen, W. Padilla, M. Cich, A. Azad, R. Averitt, and A. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  29. L. Fekete, F. Kadlec, P. Kužel, and H. Nemec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32(6), 680–682 (2007). [CrossRef] [PubMed]
  30. J. Richter, “Dielektrische Weitwinkellinsen und Speiseanordnungen für Focal Plane Array Antennen bildgebender Millimeterwellensysteme,” Ph.D. thesis (Technischen Fakultät der Universität Erlangen-Nürnberg, 2006).
  31. J. Lu, C. Chiu, C. Kuo, C. Lai, H. Chang, Y. Hwang, C. Pan, and C. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008). [CrossRef]
  32. P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, and H. Ito, “Terahertz generation with tandem seeded optical parametric generators,” Opt. Lett. 30(6), 640–642 (2005). [CrossRef] [PubMed]
  33. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010). [CrossRef]
  34. G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49(1B), 253–261 (1971). [CrossRef]
  35. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  36. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35(10), 1587–1589 (1996). [CrossRef] [PubMed]
  37. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43(4), 783–787 (2004). [CrossRef] [PubMed]
  38. D. Shaw and C.-W. Lin, “Coma compensation of O-ring driven liquid-filled lenses,” Opt. Rev. 16(2), 129–132 (2009). [CrossRef]
  39. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005). [CrossRef]
  40. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-µm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009). [CrossRef]
  41. J. Birch, “The far infrared optical constants of polyethylene,” Infrared Phys. 30(2), 195–197 (1990). [CrossRef]
  42. S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007). [CrossRef]
  43. C. Jördens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bahr, M. Mikulics, and M. Koch, “Fibre-coupled terahertz transceiver head,” Electron. Lett. 44(25), 1473–1475 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited