OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4536–4541

Photochromic polyurethanes for rewritable CGHs in optical testing

Giorgio Pariani, Chiara Bertarelli, Giovanni Dassa, Andrea Bianco, and Giuseppe Zerbi  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4536-4541 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1023 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of photochromic Computer Generated Holograms (CGHs) to test any complex optics, such as aspheres and free-form optics, is described. A thermally irreversible photochromic polyurethane has been synthesized to give good thin films with a strong modulation of the optical transmission. The photochromic CGH has been tested with a simple interferometrical configuration showing promising results. The use of photochromic CGHs provides advantages over standard technologies, as rewritability and self developing.

© 2011 OSA

OCIS Codes
(090.2890) Holography : Holographic optical elements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.5470) Materials : Polymers
(220.1250) Optical design and fabrication : Aspherics
(220.4840) Optical design and fabrication : Testing
(160.5335) Materials : Photosensitive materials

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 7, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 21, 2010
Published: February 24, 2011

Giorgio Pariani, Chiara Bertarelli, Giovanni Dassa, Andrea Bianco, and Giuseppe Zerbi, "Photochromic polyurethanes for rewritable CGHs in optical testing," Opt. Express 19, 4536-4541 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Crano, and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Topics in Applied Chemistry (Plenum Press, 1999).
  2. H. Dürr, and H. Bouas-Laurent, eds., Photochromism, Molecules and Systems (Elsevier, 1990).
  3. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000). [CrossRef]
  4. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100(5), 1685–1716 (2000). [CrossRef]
  5. F. M. Raymo and M. Tomasulo, “Optical processing with photochromic switches,” Chemistry 12(12), 3186–3193 (2006). [CrossRef] [PubMed]
  6. B. L. Feringa, ed., Molecular Switches (Wiley-VCH, 2001).
  7. S. Cattaneo, S. Lecomte, C. Bosshard, G. Montemezzani, P. Gunter, R. C. Livingston, and F. Diederich, “Photoinduced reversible optical gratings in photochromic diarylethene-doped polymeric thin films,” J. Opt. Soc. Am. B 19(9), 2032–2038 (2002). [CrossRef]
  8. A. Bianco, C. Bertarelli, P. Conconi, E. Molinari, C. Quaglia, G. Toso, F. M. Zerbi, and G. Zerbi, “New developments in photochromic materials for volume phase holographic gratings,” in Optomechanical Technologies for Astronomy, (SPIE, 2006), 62733V–62737.
  9. W. J. Tomlinson, “Volume holograms in photochromic materials,” Appl. Opt. 14(10), 2456–2467 (1975). [CrossRef] [PubMed]
  10. W. J. Tomlinson, “Phase holograms in photochromic materials,” Appl. Opt. 11(4), 823–831 (1972). [CrossRef] [PubMed]
  11. T. Kardinahl, and H. Franke, “Holographic gratings in organic photochromics: nonlinear and switchable gratings,” in Holographic Materials II, (SPIE, 1996), 52–58.
  12. R. A. Lessard, F. Ghailane, and G. Manivannan, “Holographic characterization of photochromic-doped-polymer films for holographic memories,” in Holographic Materials II, (SPIE, 1996), 45–51.
  13. S. J. Luo, K. X. Chen, L. C. Cao, G. D. Liu, Q. S. He, G. F. Jin, D. X. Zeng, and Y. Chen, “Photochromic diarylethene for rewritable holographic data storage,” Opt. Express 13(8), 3123–3128 (2005). [CrossRef] [PubMed]
  14. E. Kim, J. Park, S. Cho, N. Kim, and J. Kim, “Preparation and holographic recording of diarylethene-doped photochromic films,” ETRI J. 25(4), 253–257 (2003). [CrossRef]
  15. Y. Chen, C. M. Wang, M. G. Fan, B. L. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004). [CrossRef]
  16. S. Z. Pu, T. S. Yang, B. L. Yao, Y. L. Wang, M. Lei, and J. K. Xu, “Photochromic diarylethene for polarization holographic optical recording,” Mater. Lett. 61(3), 855–859 (2007). [CrossRef]
  17. B. Braunecker, R. Hentschel, and H. J. Tiziani, eds., Advanced Optics Using Aspherical Elements (SPIE, Bellingham, 2008).
  18. D. Malacara, Optical Shop Testing, Pure and Applied Optics (John Wiley & Sons, Inc., 1992).
  19. A. J. MacGovern and J. C. Wyant, “Computer generated holograms for testing optical elements,” Appl. Opt. 10(3), 619–624 (1971). [CrossRef] [PubMed]
  20. J. C. Wyant and V. P. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11(12), 2833–2839 (1972). [CrossRef] [PubMed]
  21. T. Yatagai and H. Saito, “Interferometric testing with computer-generated holograms: aberration balancing method and error analysis,” Appl. Opt. 17(4), 558–565 (1978). [CrossRef] [PubMed]
  22. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004). [CrossRef]
  23. D. H. Waldeck, “Photoisomerization Dynamics of Stilbenes,” Chem. Rev. 91(3), 415–436 (1991). [CrossRef]
  24. M. Irie, T. Lifka, K. Uchida, S. Kobatake, and Y. Shindo, “Fatigue resistant properties of photochromic dithienylethenes: by-product formation,” Chem. Commun. (Camb.) (8), 747–750 (1999). [CrossRef]
  25. A. Lucotti, C. Bertarelli, and G. Zerbi, “'Optical' fatigue in a solid state diarylethene polymer,” Chem. Phys. Lett. 392(4-6), 549–554 (2004). [CrossRef]
  26. Y. C. Jeong, D. G. Park, I. S. Lee, S. I. Yang, and K. H. Ahn, “Highly fluorescent photochromic diarylethene with an excellent fatigue property,” J. Mater. Chem. 19(1), 97–103 (2008). [CrossRef]
  27. S. Z. Pu, C. H. Zheng, Z. G. Le, G. Liu, and C. B. Fan, “Substituent effects on the properties of photochromic diarylethenes,” Tetrahedron 64(11), 2576–2585 (2008). [CrossRef]
  28. S. Z. Pu, T. S. Yang, J. K. Xu, L. Shen, G. Z. Li, Q. Xiao, and B. Chen, “Syntheses and optoelectronic properties of four photochromic dithienylethenes,” Tetrahedron 61(27), 6623–6629 (2005). [CrossRef]
  29. L. N. Lucas, J. van Esch, R. M. Kellogg, and B. L. Feringa, “A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes,” Chem. Commun. (Camb.) (21), 2313–2314 (1998). [CrossRef]
  30. M. Irie, K. Sakemura, M. Okinaka, and K. Uchida, “Photochromism of dithienylethenes with electron-donating substituents,” J. Org. Chem. 60(25), 8305–8309 (1995). [CrossRef]
  31. F. Stellacci, C. Bertarelli, F. Toscano, M. C. Gallazzi, G. Zotti, and G. Zerbi, “A high quantum yield diarylethene-backbone photochromic polymer,” Adv. Mater. 11, 292–295 (1999). [CrossRef]
  32. C. Bertarelli, A. Bianco, V. Boffa, M. Mirenda, M. C. Gallazzi, and G. Zerbi, “Poly(dithienylethene-alt-1,4-divinylenephenylene)s: Increasing the molecular weights in diarylethene photochromic polymers,” Adv. Funct. Mater. 14(11), 1129–1133 (2004). [CrossRef]
  33. T. J. Wigglesworth, A. J. Myles, and N. R. Branda, “High-content photochromic polymers based on dithienylethenes,” Eur. J. Org. Chem. 2005(7), 1233–1238 (2005). [CrossRef]
  34. Y. C. Jeong, D. G. Park, E. Kim, S. I. Yang, and K. H. Ahn, “Polymerization of a photochromic diarylethene by friedel-crafts alkylation,” Macromolecules 39(9), 3106–3109 (2006). [CrossRef]
  35. E. Kim, Y. K. Choi, and M. H. Lee, “Photoinduced refractive index change of a photochromic diarylethene polymer,” Macromolecules 32(15), 4855–4860 (1999). [CrossRef]
  36. S. Zielińska, E. Ortyl, R. Barille, and S. Kucharski, “Preparation and characteristics of new chiral photochromic copolymers,” Opt. Mater. 32(1), 198–206 (2009). [CrossRef]
  37. S. Y. Cho, M. Yoo, H. W. Shin, K. H. Ahn, Y. R. Kim, and E. Kim, “Preparation of diarylethene copolymers and their photoinduced refractive index change,” Opt. Mater. 21(1-3), 279–284 (2003). [CrossRef]
  38. A. T. Bens, R. Comanici, B. Gabel, C. Kryschi, H. D. Martin, and H. Ritter, “Novel photosensitive polyurethanes based on photochromic dithienylethene monomers: synthesis, characterization and photophysical properties of a new film-building material for photonic applications,” E-Polymers (2003).
  39. J. Biteau, F. Chaput, K. Lahlil, J. P. Boilot, G. M. Tsivgoulis, J. M. Lehn, B. Darracq, C. Marois, and Y. Levy, “Large and stable refractive index change in photochromic hybrid materials,” Chem. Mater. 10(7), 1945–1950 (1998). [CrossRef]
  40. F. Chaput, K. Lahlil, J. Biteau, J.-P. Boilot, B. Darracq, Y. Levy, J. Peretti, V. I. Safarov, J.-M. Lehn, and A. Fernandez-Acebes, “Design of optical components and optical data storage in photochromic sol-gel films containing dithienylethene or azobenzene derivatives,” in Sol-Gel Optics V, (SPIE, 2000), 32–37.
  41. S. Hermes, G. Dassa, G. Toso, A. Bianco, C. Bertarelli, and G. Zerbi, “New fast synthesis route for symmetric and asymmetric phenyl-substituted photochromic dithienylethenes bearing functional groups such as alcohols, carboxylic acids, or amines,” Tetrahedron Lett. 50(14), 1614–1617 (2009). [CrossRef]
  42. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  43. W. J. Tomlinson, “Dynamics of photochromic conversion in optically thick samples: theory,” Appl. Opt. 15(3), 821–826 (1976). [CrossRef] [PubMed]
  44. S. Reichelt, C. Pruss, and H. J. Tiziani, “Specification and characterization of CGHs for interferometrical optical testing,” in Interferometry XI: Applications, W. Osten, ed. (2002), pp. 206–217.
  45. Y. C. Chang and J. Burge, “Error analysis for CGH optical testing,” Optical Manufacturing and Testing III 3782, 358–366 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited