OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4566–4576

Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities

Mario Bolea, José Mora, Beatriz Ortega, and José Capmany  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4566-4576 (2011)
http://dx.doi.org/10.1364/OE.19.004566


View Full Text Article

Enhanced HTML    Acrobat PDF (1933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 2, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 26, 2011
Published: February 24, 2011

Citation
Mario Bolea, José Mora, Beatriz Ortega, and José Capmany, "Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities," Opt. Express 19, 4566-4576 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4566


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  5. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-Time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003). [CrossRef]
  6. J. D. Schwartz, J. Azaña, and D. V. Plant, “A Fully Electronic System for the Time Magnification of Ultra-Wideband Signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007). [CrossRef]
  7. G. N. Saddik, R. S. Singh, and R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Tech. 55(7), 1431–1437 (2007). [CrossRef]
  8. R. S. Withers, A. C. Anderson, P. V. Wright, and S. A. Reible, “Superconductive tapped delay lines for microwave analog signal processing,” IEEE Trans. Magn. 19(3), 480–484 (1983). [CrossRef]
  9. F. Huang, “Low loss quasitransversal microwave filters with specified amplitude and phase characteristics,” Proc. Inst. Electr. Eng. 140, 433–440 (1993).
  10. F. Huang, “Quasitransversal synthesis of microwave chirped filters,” Electron. Lett. 28(11), 1062–1064 (1992). [CrossRef]
  11. T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “Wiggly-Line” filters with spurious passband supression,” IEEE Trans. Microw. Theory Tech. 49(9), 1593–1598 (2001). [CrossRef]
  12. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Chirped delay lines in microstrip Technology,” IEEE Trans. Microw. Wireless Compon. Lett. 11(12), 486–488 (2001). [CrossRef]
  13. J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Trans. Microw. Wireless Compon. Lett. 16(4), 215–217 (2006). [CrossRef]
  14. J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azaña, and D. V. Plant, “An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Trans. Microw. Wireless Compon. Lett. 18(2), 103–105 (2008). [CrossRef]
  15. J. D. Schwartz, R. Abhari, D. V. Plant, and J. Azaña, “Design and analysis of 1-D uniform and chirped electromagnetic bandgap structures in substrate-integrated waveguides,” IEEE Trans. Microw. Theory Tech. 58(7), 1858–1866 (2010). [CrossRef]
  16. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder Interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006). [CrossRef]
  17. S. Wakabayashi and A. Baba, “Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband > 35 nm and compact tunable dispersion compensator,” Appl. Opt. 19, 1653–1660 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited