OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4740–4755

Description of the modes governing the optical transmission through metal gratings

Mickaël Guillaumée, L. Andrea Dunbar, and Ross P. Stanley  »View Author Affiliations


Optics Express, Vol. 19, Issue 5, pp. 4740-4755 (2011)
http://dx.doi.org/10.1364/OE.19.004740


View Full Text Article

Enhanced HTML    Acrobat PDF (1728 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An analytical model based on a modal expansion method is developed to investigate the optical transmission through metal gratings. This model gives analytical expressions for the transmission as well as for the dispersion relations of the modes responsible for high transmission. These expressions are accurate even for real metals used in the visible – near-infrared wavelength range, where surface plasmon polaritons (SPP’s) are excited. The dispersion relations allow the nature of the modes to be assessed. We find that the transmission modes are hybrid between Fabry-Pérot like modes and SPP’s. It is also shown that it is important to consider different refractive indices above and below the gratings in order to determine the nature of the hybrid modes. These findings are important as they clarify the nature of the modes responsible for high transmission. It can also be useful as a design tool for metal gratings for various applications.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 9, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: February 8, 2011
Published: February 25, 2011

Citation
Mickaël Guillaumée, L. Andrea Dunbar, and Ross P. Stanley, "Description of the modes governing the optical transmission through metal gratings," Opt. Express 19, 4740-4755 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-5-4740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000). [CrossRef]
  4. F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002). [CrossRef]
  5. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  6. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001). [CrossRef]
  7. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000). [CrossRef]
  8. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  9. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13(20), 7760–7771 (2005). [CrossRef] [PubMed]
  10. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005). [CrossRef] [PubMed]
  11. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  12. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005). [CrossRef] [PubMed]
  13. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68(12), 125404 (2003). [CrossRef]
  14. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A, Pure Appl. Opt. 9(5), 490–495 (2007). [CrossRef]
  15. H. Lochbihler and R. A. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32(19), 3459–3465 (1993). [CrossRef] [PubMed]
  16. R. A. Depine, “Perfectly conducting diffraction grating formalisms extended to good conductors via the surface impedance boundary condition,” Appl. Opt. 26(12), 2348–2354 (1987). [CrossRef] [PubMed]
  17. M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009). [CrossRef]
  18. C. C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microw. Theory Tech. 21(1), 1–6 (1973). [CrossRef]
  19. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2(1), 48–51 (2000). [CrossRef]
  20. L. Martín-Moreno and F. J. Garcia-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008). [CrossRef]
  21. The commercially available software GSolver has been used. More information can be found at http://www.gsolver.com/ (2010).
  22. Data may be retrieved at http://www.sopra-sa.com (20010).
  23. The commercially available software Omnisim has been used. More information can be found at http://www.photond.com/products/omnisim.htm (2010).
  24. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15(7), 4310–4320 (2007). [CrossRef] [PubMed]
  25. A. Yariv, Optical electronics in modern communications (Oxford University Press, 2007).
  26. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008). [CrossRef]
  27. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited