OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 5 — Feb. 28, 2011
  • pp: 4762–4767

High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition

Hyung-Jun Kim, Ho-Jun Choi, Song-Min Nam, and Yong-Won Song  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4762-4767 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We preserve optical nonlinear properties of single-walled carbon nanotubes (SWNTs) within SiO2-host employing aerosol deposition (AD) that guarantees the formation of dense ceramic thick films at room temperature without combustion and solubility limitation of the SWNTs. The intact nonlinearity is verified with transmittance check, Raman spectrometry and electron microscopes. As a saturable absorption device, the SiO2-SWNT composite film successfully mode-locks fiber lasers inducing high-quality output pulses with the measured pulse duration and repetition rate of 890 fs and 9.52 MHz, respectively. After experiencing the intracavity power higher than 20 dBm, the hosted SWNTs are survived to function as the pulse formers.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.6030) Materials : Silica
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 4, 2011
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 14, 2011
Published: February 25, 2011

Hyung-Jun Kim, Ho-Jun Choi, Song-Min Nam, and Yong-Won Song, "High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition," Opt. Express 19, 4762-4767 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]
  2. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, “Semiconductor carbon nanotubes a ultrafast switching materials for optical telecommunications,” Adv. Mater. 15(6), 534–537 (2003). [CrossRef]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004). [CrossRef]
  4. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005). [CrossRef] [PubMed]
  5. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008). [CrossRef]
  6. Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, “Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites,” Acta Mater. 52(4), 931–944 (2004). [CrossRef]
  7. R. Andrews and M. C. Weisenberger, “Carbon nanotube polymer composites,” Curr. Opin. Solid. St. M. 8(1), 31–37 (2004). [CrossRef]
  8. H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, “Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers,” Polymer (Guildf.) 48(13), 3781–3789 (2007). [CrossRef]
  9. Y. W. Song, K. H. Fong, S. Y. Set, K. Kikuchi, and S. Yamashita, “Carbon nanotube-incorporated sol–gel glass for high-speed modulation of intracavity absorption of fiber lasers,” Opt. Commun. 283(19), 3740–3742 (2010). [CrossRef]
  10. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, and P. St J. Russell, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
  11. V. G. Gavalas, R. Andrews, D. Bhattacharyya, and L. G. Bachas, “Carbon nanotube sol-gel composite materials,” Nano Lett. 1(12), 719–721 (2001). [CrossRef]
  12. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbiumdoped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006). [CrossRef]
  13. N. R. Pradhan and G. S. Iannacchione, “Relaxation dynamics of glass transition in PMMA+SWCNT composites by temperature-modulated DSC,” J. Phys. D Appl. Phys. 43(10), 105401 (2010). [CrossRef]
  14. J. Akedo, “Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,” J. Therm. Spray Tech. 17(2), 181–198 (2008). [CrossRef]
  15. S. M. Nam, N. Mori, H. Kakemoto, S. Wada, J. Akedo, and T. Tsurumi, “Alumina thick films as integral substrates using aAerosol deposition method,” Jpn. J. Appl. Phys. 43(No. 8A), 5414–5418 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited