OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5134–5142

80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering

Christian Meuer, Carsten Schmidt-Langhorst, René Bonk, Holger Schmeckebier, Dejan Arsenijević, Gerrit Fiol, Andrey Galperin, Juerg Leuthold, Colja Schubert, and Dieter Bimberg  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5134-5142 (2011)
http://dx.doi.org/10.1364/OE.19.005134


View Full Text Article

Enhanced HTML    Acrobat PDF (1440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength conversion of 40 Gb/s and 80 Gb/s return-to-zero on-off-keying signals using a quantum-dot semiconductor optical amplifier in combination with a delay interferometer as subsequent filter is demonstrated. The performance of the 80 Gb/s wavelength converter measured in terms of the bit-error ratio demonstrated here is the highest reported up to now for quantum-dot semiconductor optical amplifiers. The typical fast gain dynamics manifests itself in open eye diagrams of the converted signal. The slow phase dynamics of the carrier reservoir however induces severe patterning and requires compensation. Adaptation of the free-spectral range of the delay interferometer is necessary in order to mitigate these phase effects and to achieve error-free wavelength conversion.

© 2011 OSA

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(230.7405) Optical devices : Wavelength conversion devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 18, 2011
Published: March 3, 2011

Citation
Christian Meuer, Carsten Schmidt-Langhorst, René Bonk, Holger Schmeckebier, Dejan Arsenijević, Gerrit Fiol, Andrey Galperin, Juerg Leuthold, Colja Schubert, and Dieter Bimberg, "80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering," Opt. Express 19, 5134-5142 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005). [CrossRef]
  3. D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. N. Ledentsov, and A. R. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi., A Appl. Mater. Sci. 203(14), 3523–3532 (2006). [CrossRef]
  4. D. Bimberg, M. Grundmann, N. N. Ledentsov, S. S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. M. Ustinov, P. S. Kopev, and Z. I. Alferov, “Self-organization processes in MBE-grown quantum dot structures,” Thin Solid Films 267(1-2), 32–36 (1995). [CrossRef]
  5. A. V. Uskov, E. P. O'Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005). [CrossRef]
  6. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008). [CrossRef] [PubMed]
  7. I. O‘Driscoll, T. Piwonski, J. Houlihan, G. Huyet, R. J. Manning, and B. Corbett, “Phase dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91(26), 263506 (2007). [CrossRef]
  8. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers,” J. Phys. D Appl. Phys. 38(13), 2126–2134 (2005). [CrossRef]
  9. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification by using self-phase modulation in a quantum-dot SOA,” IEEE Photon. Technol. Lett. 22(7), 492–494 (2010). [CrossRef]
  10. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. Kovsh, I. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier,” in European Conference on Optical Communications (ECOC 2008) (Brussels, Belgium, 2008), p. Th.1.C.2.
  11. C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris, D. Bimberg, K. Petermann, and C. Schubert, “80 Gb/s multi-wavelength booster amplification in an InGaAs/GaAs quantum-dot semiconductor optical amplifier,” in European Conference on Optical Communication (ECOC 2010) (Torino, Italy, 2010), p. Mo.1.F.6.
  12. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification in a quantum dot SOA ” in Optical Fiber Communication Conference (OFC 2010) (San Diego, CA, USA, 2010), p. OMT2.
  13. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi, B Basic Res. 238(2), 301–304 (2003). [CrossRef]
  14. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, and K. Kitayama, “80 Gb/s Multicast Wavelength Conversion by XGM in a QD-SOA,” in European Conference on Optical Communication (ECOC2010) (Torino, Italy, 2010), p. Mo.2.A.3.
  15. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm,” in European Conference on Optical Communication (ECOC 2009) (Vienna, Austria, 2009), p. PDP 1.4.
  16. O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötzel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008). [CrossRef]
  17. J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent network demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003). [CrossRef]
  18. M. L. Nielsen, B. Lavigne, and B. Dagens, “Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering,” Electron. Lett. 39(18), 1334–1335 (2003). [CrossRef]
  19. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007). [CrossRef]
  20. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photon. Technol. Lett. 10(3), 346–348 (1998). [CrossRef]
  21. J. Leuthold, B. Mikkelsen, G. Raybon, C. H. Joyner, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and R. Behringer, “All-optical wavelength conversion between 10 and 100 Gb/s with SOA delayed-interference configuration,” Opt. Quantum Electron. 33(7/10), 939–952 (2001). [CrossRef]
  22. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004). [CrossRef]
  23. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010). [CrossRef]
  24. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis, J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg, “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 µm,” IEEE J. Sel. Top. Quantum Electron. 15(3), 749–756 (2009). [CrossRef]
  25. C. Schmidt-Langhorst, C. Meuer, R. Ludwig, D. Puris, R. Bonk, T. Vallaitis, D. Bimberg, K. Petermann, J. Leuthold, and C. Schubert, “Quantum-dot semicondcutor optical booster amplifier with ultra-fast gain recovery for pattern-effect free amplification of 80 Gb/s RZ-OOK data signals,” in European Conference on Optical Communication (ECOC 2009) (Vienna, Austria, 2009), p. 6.2.1.
  26. J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 94(4), 041112 (2009). [CrossRef]
  27. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L. L. Buhl (Larry), S. Cabot, A. Bhardwaj, X. Liu, M. A. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, N. K. Dutta, S. S. Patel, D. T. Neilson, C. R. Giles, A. Piccirilli, and J. Jaques, “Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14(3), 758–769 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited