OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5163–5170

Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source

Paul J. Wrzesinski, Dmitry Pestov, Vadim V. Lozovoy, James R. Gord, Marcos Dantus, and Sukesh Roy  »View Author Affiliations

Optics Express, Vol. 19, Issue 6, pp. 5163-5170 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of femtosecond-laser sources for the diagnostics of combustion and reacting-flow environments requires detailed knowledge of optical dispersive properties of the medium interacting with the laser beams. Here the second- and third-order dispersion values for nitrogen, oxygen, air, carbon dioxide, ethylene, acetylene, and propane within the 700–900 nm range are reported, along with the pressure dependence of the chromatic dispersion. The effect of dispersion on axial resolution when applied to nonlinear spectroscopy with ultrabroadband pulses is also discussed.

© 2011 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(260.2030) Physical optics : Dispersion
(320.5540) Ultrafast optics : Pulse shaping
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: January 21, 2011
Revised Manuscript: February 15, 2011
Manuscript Accepted: February 23, 2011
Published: March 3, 2011

Paul J. Wrzesinski, Dmitry Pestov, Vadim V. Lozovoy, James R. Gord, Marcos Dantus, and Sukesh Roy, "Group-velocity-dispersion measurements of atmospheric and combustion-related gases using an ultrabroadband-laser source," Opt. Express 19, 5163-5170 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Roy, P. Kinnius, R. Lucht, and J. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281(2), 319–325 (2008). [CrossRef]
  2. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  3. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  4. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009). [CrossRef]
  5. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. Xu, S. Roy, J. R. Gord, and M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. (preprint), http://onlinelibrary.wiley.com/doi/10.1002/jrs.2709/abstract .
  6. S. Diddams and J. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13(6), 1120–1129 (1996). [CrossRef]
  7. R. Chlebus, P. Hlubina, and D. Ciprian, “Direct measurement of group dispersion of optical components using white-light spectral interferometry,” Opto-Electron. Rev. 15(3), 144–148 (2007). [CrossRef]
  8. M. G. Welch, C. E. de Nobriga, R. A. Correa, W. J. Wadsworth, and J. C. Knight, “Accurate measurement of the dispersion of hollow-core fibers using a scalable technique,” Opt. Express 17(11), 9006–9012 (2009). [CrossRef] [PubMed]
  9. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37(24), 5679–5686 (1998). [CrossRef]
  10. T. D. Scarborough, C. Petersen, and C. J. G. J. Uiterwaal, “Measurements of the GVD of water and methanol and laser pulse characterization using direct imaging methods,” N. J. Phys. 10(10), 103011 (2008). [CrossRef]
  11. Y. Coello, V. Lozovoy, T. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008). [CrossRef]
  12. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt. 46(35), 8394–8401 (2007). [CrossRef] [PubMed]
  13. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5(8), 1563–1572 (1988). [CrossRef]
  14. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929 (2000). [CrossRef]
  15. J. Dymond, The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation (Clarendon and Oxford University Press, 1980).
  16. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008). [CrossRef] [PubMed]
  17. T. A. Pitts, T. S. Luk, J. K. Gruetzner, T. R. Nelson, A. McPherson, S. M. Cameron, and A. C. Bernstein, “Propagation of self-focusing laser pulses in atmosphere: experiment versus numerical simulation,” J. Opt. Soc. Am. B 21(11), 2008–2016 (2004). [CrossRef]
  18. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14(19), 8885–8889 (2006). [CrossRef] [PubMed]
  19. K. Osvay, Á. Börzsönyi, A. Kovács, M. Görbe, G. Kurdi, and M. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87(3), 457–461 (2007). [CrossRef]
  20. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16(8), 5499–5504 (2008). [CrossRef] [PubMed]
  21. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48(4), B17–B22 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited