OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5172–5186

Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver

Xuezhe Zheng, Dinesh Patil, Jon Lexau, Frankie Liu, Guoliang Li, Hiren Thacker, Ying Luo, Ivan Shubin, Jieda Li, Jin Yao, Po Dong, Dazeng Feng, Mehdi Asghari, Thierry Pinguet, Attila Mekis, Philip Amberg, Michael Dayringer, Jon Gainsley, Hesam Fathi Moghadam, Elad Alon, Kannan Raj, Ron Ho, John E. Cunningham, and Ashok V. Krishnamoorthy  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5172-5186 (2011)
http://dx.doi.org/10.1364/OE.19.005172


View Full Text Article

Enhanced HTML    Acrobat PDF (1527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10−12 compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of −17 dBm for a BER of 10−12 at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.

© 2011 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(060.4510) Fiber optics and optical communications : Optical communications
(130.0130) Integrated optics : Integrated optics
(200.4650) Optics in computing : Optical interconnects
(250.0250) Optoelectronics : Optoelectronics
(250.7360) Optoelectronics : Waveguide modulators
(130.6622) Integrated optics : Subsystem integration and techniques

ToC Category:
Optoelectronics

History
Original Manuscript: January 31, 2011
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 24, 2011
Published: March 3, 2011

Citation
Xuezhe Zheng, Dinesh Patil, Jon Lexau, Frankie Liu, Guoliang Li, Hiren Thacker, Ying Luo, Ivan Shubin, Jieda Li, Jin Yao, Po Dong, Dazeng Feng, Mehdi Asghari, Thierry Pinguet, Attila Mekis, Philip Amberg, Michael Dayringer, Jon Gainsley, Hesam Fathi Moghadam, Elad Alon, Kannan Raj, Ron Ho, John E. Cunningham, and Ashok V. Krishnamoorthy, "Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver," Opt. Express 19, 5172-5186 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Zheng P. Koka, H. Schwetman, J. Lexau, R. Ho, J.E. Cunningham, A.V. Krishnamoorthy, “Silicon photonic WDM point-to-point network for multi-chip processor interconnects,” Group IV Photonics, 2008 5th IEEE International Conference on, pp. 380–382, 2008.
  2. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. Beausoleil, and J. H. Ahn, “Corona: system implications of emerging nanophotonic technology,” Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA), pp. 153–164, June 2008.
  3. A. Shacham, K. Bergman, and L. Carloni, “On the design of a photonic network-on-chip,” Proceedings of the First International Symposium on Networks-on-Chip (NOCS), pp. 53–64, May 2007.
  4. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanović, and K. Asanović, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” Proceedings of the 16th IEEE Symposium on High Performance Interconnects (HOT-I), pp. 21–30, August 2008.
  5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [CrossRef]
  6. A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, and C. Gunn, “A fully integrated 4x10Gb/s DWDM optoelectronic transceiver in a standard 0.13um CMOS SOI,” ISSCC 2007 Dig. Tech. Papers, Feb. 2007.
  7. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD), paper PDIWI5, 2010.
  8. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]
  9. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  10. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of the 5th IEEE International Conference on Group IV Photonics, pp. 4–6, 2009.
  11. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low VPP, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  12. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  13. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  14. G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Advances in Optical Technologies, Hindawi Publishing Corporation, Volume 2008, Article ID 196572.
  15. D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95(26), 261105 (2009). [CrossRef]
  16. N. N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010). [CrossRef] [PubMed]
  17. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010). [CrossRef] [PubMed]
  18. X. Zheng, F. Liu, D. Patil, H. Thacker, Y. Luo, T. Pinguet, A. Mekis, J. Yao, G. Li, J. Shi, K. Raj, J. Lexau, E. Alon, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems,” Opt. Express 18(1), 204–211 (2010). [CrossRef] [PubMed]
  19. G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power high-performance Si photonic transmitter,” OFC/NFOEC 2010, OMI2, pp.1–3 2010.
  20. S. Palermo, and M. Horowitz, “High-speed transmitters in 90nm CMOS for high-density optical interconnects,” Proceedings of the 32nd European Solid-State Circuits Conference (ESSCIRC), pp. 508–511, September 2006.
  21. D. Dobberpuhl, “The design of a high performance low power microprocessor,” Proceedings of the IEEE International Symposium on Low-Power Electronics and Design (ISLPED), pp. 11–16, 1996.
  22. M. Ingels and M. S. J. Steyaert, “A 1-gb/s, 0.7- um CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34(7), 971–977 (1999). [CrossRef]
  23. K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “GaAs 850nm modulators solder-bonded to silicon,” IEEE Photon. Technol. Lett. 5(7), 776–778 (1993). [CrossRef]
  24. A. L. Lentine, K. W. Goossen, J. A. Walker, L. M. F. Chirovsky, L. A. D’Asaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J.-M. Kuo, D. W. Dahringer, D. P. Kossives, D. D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, and D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron. 2(1iss.1), 77–84 (1996). [CrossRef]
  25. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibengath, S. P. Hui, G. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A. Walker, J. E. Cunningham, and L. A. D’Asaro, “Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits,” IEEE Photon. Technol. Lett. 11(1), 128–130 (1999). [CrossRef]
  26. J. E. Cunningham, A. V. Krishnamoorthy, R. Ho, I. Shubin, H. Thacker, J. Lexau, D. C. Lee, D. Feng, E. Chow, Y. Luo, X. Zheng, G. Li, J. Yao, T. Pinguet, K. Raj, M. Asghari, and J. G. Mitchell, “Integration and Packaging of a Macrochip with Silicon Nanophotonic Links,” IEEE J. Sel. Top. Quantum Electron. in press.
  27. A. Majumdar, J.E. Cunningham, and A.V. Krishnamoorthy, “Alignment and performance considerations for capacitive, inductive and optical proximity communication,” IEEE Trans. Adv. Packag. 3327690–701 (2010). [CrossRef]
  28. J. E. Cunninghmam, A. V. Krishnamoorthy, I. Shubin, J. G. Mitchell, and X. Zheng, “Aligning chips face to face for dense capacitive communication,” Coupled Data Techniques, Springer, R. Ho and R. Drost Ed., 2010.
  29. H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, T. Pinguet, A. Mekis, P. Dong, S. Liao, D. Feng, M. Asghari, R. Ho, K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” IEEE Electronic Components and Technology Conference, pp. 240–246, 2010.
  30. H. D. Thacker, I. Shubin, Y. Luo, J. Costa, J. Lexau, X. Zheng, G. Li, J. Yao, J. Li, D. Patil, F. Liu, R. Ho, M. Asghari, T. Pinguet, K. Raj, J. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham, “Hybrid integration of silicon nanophotonics with 40nm-CMOS VLSI drivers and receivers,” IEEE Electronic Components and Technology Conference, 2011, in press.
  31. Barkai,A. Liu, D. Kim, R. Cohen, N. Elek, H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Efficient mode converter for coupling between fiber and micrometer size silicon waveguides,” Group IV Photonics, 4th IEEE International Conference, 19–21 Sept. 2007, 49–51 2007.
  32. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  33. L. Vivien, et al., “A high efficiency silicon nitride grating coupler,” Group IV Photonics, 4th IEEE International Conference, 19–21 Sept. 2007, 162–164 2007.
  34. J. Yao, X. Zheng, G. Li, Y. Luo, H. Thacker, A. Mekis, T. Pinguet, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Grating coupler based optical proximity coupling for scalable computing systems,” SPIE Photonics West 2011, Optoelectronic Interconnects and Component Integration XI (OE112), 2011.
  35. X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited