OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 6 — Mar. 14, 2011
  • pp: 5303–5312

Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon

Johann Berthelot, Alexandre Bouhelier, Gérard Colas des Francs, Jean-Claude Weeber, and Alain Dereux  »View Author Affiliations


Optics Express, Vol. 19, Issue 6, pp. 5303-5312 (2011)
http://dx.doi.org/10.1364/OE.19.005303


View Full Text Article

Enhanced HTML    Acrobat PDF (1643 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The experimental observation of a one-dimensional evanescent wave supported by a 90° metal edge is reported. Through a measurement of in-plane momenta, we clearly demonstrate the dimensional character of this surface wave and show that it is non-radiative in the superstrate. Excitation conditions, lateral extension and polarization properties of this wave are discussed. Finally, we explore the effect of the surrounding dielectric medium and demonstrate that a single edge can sustain distinct excitations.

© 2011 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.6970) Physical optics : Total internal reflection
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 4, 2011
Revised Manuscript: February 18, 2011
Manuscript Accepted: February 21, 2011
Published: March 7, 2011

Citation
Johann Berthelot, Alexandre Bouhelier, Gérard Colas des Francs, Jean-Claude Weeber, and Alain Dereux, "Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon," Opt. Express 19, 5303-5312 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-6-5303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  2. T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion,” Appl. Phys. Lett. 79, 4583–4585 (2001). [CrossRef]
  3. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997). [CrossRef] [PubMed]
  5. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  6. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003). [CrossRef]
  7. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006). [CrossRef]
  8. R. F. Wallis, A. A. Maradudin, and G. I. Stegeman, “Surface polariton reflection and radiation at end faces,” Appl. Phys. Lett. 42, 764–766 (1983). [CrossRef]
  9. P. Dawson, F. de Fornel, and J.-P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994). [CrossRef] [PubMed]
  10. F. I. Baida, D. Van Labeke, and J.-M. Vigoureux, “Near-field surface plasmon microscopy: A numerical study of plasmon excitation, propagation, and edge interaction using a three-dimensional gaussian beam,” Phys. Rev. B 60, 7812–7815 (1999). [CrossRef]
  11. K. Hasegawa, J. U. Nöckel, and M. Deutsch, “Surface plasmon polariton propagation around bends at a metal–dielectric interface,” Appl. Phys. Lett. 84, 1835–1837 (2004). [CrossRef]
  12. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76, 035408 (2007). [CrossRef]
  13. K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008). [CrossRef]
  14. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001). [CrossRef]
  15. J. Grandidier, G. C. des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectricloaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010). [CrossRef]
  16. A. Bouhelier, and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005). [CrossRef]
  17. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005). [CrossRef] [PubMed]
  18. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local Excitation, Scattering, and Interference of Surface Plasmons,” Phys. Rev. Lett. 77, 1889 (1996). [CrossRef] [PubMed]
  19. A. Bouhelier, Th. Huser, H. Tamaru, H.-J. G¨untherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001). [CrossRef]
  20. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008). [CrossRef]
  21. S. Massenot, J.-C. Weeber, A. Bouhelier, G. C. des Francs, J. Grandidier, L. Markey, and A. Dereux, “Differential method for modeling dielectric-loaded surface plasmon polariton waveguides,” Opt. Express 16, 17599–17608 (2008). [CrossRef] [PubMed]
  22. M. Neviere, and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (CRC Press, 2002).
  23. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352–1359 (2007). [CrossRef] [PubMed]
  24. D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004). [CrossRef]
  25. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005). [CrossRef] [PubMed]
  26. L. Novotny, “Allowed and forbidden light in near-field optics. i. a single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997). [CrossRef]
  27. G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, and R. F. Wallis, “Fresnel relations for surface polaritons at interfaces,” Opt. Lett. 8, 626–628 (1983). [CrossRef] [PubMed]
  28. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009). [CrossRef]
  29. A. Degiron, and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006). [CrossRef] [PubMed]
  30. T. Vary, and P. Markos, “Propagation of surface plasmons through planar interface,” SPIE 7353, 73530K (2009). [CrossRef]
  31. S. Massenot, J. Grandidier, A. Bouhelier, G. C. des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited